流体机械

2014, v.42;No.508(10) 52-55+59

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于PCA的往复压缩机气阀故障异常监测方法
Method of Valve Fault Detection for Reciprocating Compressor based on Principal Component Analysis

徐丰甜,李建,孔祥宇,李村波,江志农,张进杰
XU Feng-tian,LI Jian,KONG Xiang-yu,LI Cun-bo,JIANG Zhi-nong,Zhang Jin-jie

摘要(Abstract):

针对气阀故障异常自动检测迫切需求,针对气阀故障在温度数据的表现特点,即同类气阀正常工作时温度波动一致,故障时温度波动存在差异,采用主成分分析(PCA)从气阀阀盖温度数据中提取故障特征参数,建立基于径向基函数的故障异常监测模型,实现了故障异常自动检测,并可进一步对故障气阀进行自动定位,为故障早期快速报警奠定了基础。
In order to satisfy the pressing needs of valve fault automatically detection,and according to the characteristic of valves' temperature data,it's found that the suction( or exhaust) valves' temperature is consistent when the valves work,otherwise it's not. From this fact,the authors use the PCA( Principal Component Analysis) to extract features to reflect the performance based on valves' temperature data. Simultaneously,with the establishment of radial basis model,it can achieve valve fault anomaly detection and automatic location of abnormal valve,and lay the foundation of early and quick warning of valve fault.

关键词(KeyWords): 往复压缩机;气阀故障;PCA;特征提取;异常检测
reciprocating compressor;valve fault;PCA;feature extraction;anomaly detection

Abstract:

Keywords:

基金项目(Foundation): 国家重点基础研究发展计划(“973”计划)项目(2012CB026000);; 国家自然科学基金重点项目(51135001)

作者(Author): 徐丰甜,李建,孔祥宇,李村波,江志农,张进杰
XU Feng-tian,LI Jian,KONG Xiang-yu,LI Cun-bo,JIANG Zhi-nong,Zhang Jin-jie

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享