流体机械

2021, v.49;No.585(03) 85-90

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于深度置信神经网络的变风量空调送风量的预测
Prediction of supply air volume of variable air volume air-conditioning based on deep-confidence neural network

雷蕾,王宁,郑皓,薛雨
LEI Lei,WANG Ning,ZHENG Hao,XUE Yu

摘要(Abstract):

送风量的精准预测是实现变风量空调蓄冷量精确控制的重要环节。本文根据变风量空调送风量的影响参数,基于深度置信神经网络方法,建立变风量空调送风量的预测模型。将该模型的预测结果同BP、Elman和模糊神经网络的预测结果进行对比,结果表明,深度置信神经网络的预测精度最高,平均绝对相对误差、均方根相对误差和决定系数分别为1.555%、0.789%和0.997 5,由此说明本文建立的模型能够精确有效地预测变风量空调的送风量。
The accurate prediction of the supply air volume is an important part to realize the precise control of the cold storage volume of the variable air volume air-conditioning.In this paper,according to the influence parameters of the variable air volume air-conditioning supply air volume,based on the deep-confidence neural network method,a prediction model of the variable air volume air-conditioning supply air volume is established.By comparing the prediction results of this model with those of BP,Elman,and fuzzy neural networks,the results show that the deep-confidence neural network has the highest prediction accuracy,and the average absolute relative error,root mean square relative error,and determination coefficient are 1.555%,0.789% and0.997 5,respectively,showing that the model established in this paper can accurately and effectively predict the supply air volume of the variable air volume air-conditioning.

关键词(KeyWords): 变风量空调;送风量;深度置信神经网络;预测模型
ariable air volume air-conditioning;supply air volume;deep-confidence neural network method;prediction model

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金项目(51708146);; 广西科技基地和人才专项(桂科AD18281046);; 广西自然科学基金项目(2018GXNSFAA281283)

作者(Author): 雷蕾,王宁,郑皓,薛雨
LEI Lei,WANG Ning,ZHENG Hao,XUE Yu

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享