基于深度置信神经网络的变风量空调送风量的预测Prediction of supply air volume of variable air volume air-conditioning based on deep-confidence neural network
雷蕾,王宁,郑皓,薛雨
LEI Lei,WANG Ning,ZHENG Hao,XUE Yu
摘要(Abstract):
送风量的精准预测是实现变风量空调蓄冷量精确控制的重要环节。本文根据变风量空调送风量的影响参数,基于深度置信神经网络方法,建立变风量空调送风量的预测模型。将该模型的预测结果同BP、Elman和模糊神经网络的预测结果进行对比,结果表明,深度置信神经网络的预测精度最高,平均绝对相对误差、均方根相对误差和决定系数分别为1.555%、0.789%和0.997 5,由此说明本文建立的模型能够精确有效地预测变风量空调的送风量。
The accurate prediction of the supply air volume is an important part to realize the precise control of the cold storage volume of the variable air volume air-conditioning.In this paper,according to the influence parameters of the variable air volume air-conditioning supply air volume,based on the deep-confidence neural network method,a prediction model of the variable air volume air-conditioning supply air volume is established.By comparing the prediction results of this model with those of BP,Elman,and fuzzy neural networks,the results show that the deep-confidence neural network has the highest prediction accuracy,and the average absolute relative error,root mean square relative error,and determination coefficient are 1.555%,0.789% and0.997 5,respectively,showing that the model established in this paper can accurately and effectively predict the supply air volume of the variable air volume air-conditioning.
关键词(KeyWords):
变风量空调;送风量;深度置信神经网络;预测模型
ariable air volume air-conditioning;supply air volume;deep-confidence neural network method;prediction model
基金项目(Foundation): 国家自然科学基金项目(51708146);; 广西科技基地和人才专项(桂科AD18281046);; 广西自然科学基金项目(2018GXNSFAA281283)
作者(Author):
雷蕾,王宁,郑皓,薛雨
LEI Lei,WANG Ning,ZHENG Hao,XUE Yu
参考文献(References):
- [1]URGE-VORSATZ D,CABEZA L,SERRANO S,et al.Heating and cooling energy trends and drivers in buildings[J].Renewable and Sustainable Energy Reviews,2015,41:85-98.
- [2]叶水泉,刘月琴,应晓儿,等.变风量空调系统设计与应用[M].北京:中国电力出版社,2016.11.YE S Q,LIU Y Q,YING X E,et.al.Design and application of variable air volume air-conditioning system[M].Beijing:China electric power press.
- [3]OKOCHI G,YAO Y.A review of recent developments and technological advancements of variable-air volume(VAV) air-conditioning system[J].Renewable and Sustainable Energy Reviews,2016,59:784-817.
- [4]TAO Y,YAN H,GAO H,et al.Application of SVRoptimized by modified simulated annealing (MSA-SVR) air conditioning load prediction model[J].Journal of Industrial Information Integration,2019,15:247-251.
- [5]LIAO G.Hybrid improved differential evolution and wavelet neural network with load forecasting problem of air conditioning[J].Electrical Power and Energy Systems,2014,61:673-682.
- [6]FU G.Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system[J].Energy,2018,148:269-282.
- [7]严旭,游典,孙庆岭.整车空调系统风量CFD仿真研究[C]//2015年中国汽车工程学会年会论文集,2015:1424-1427.YAN X,YONG D,SUN Q.Research of CFD Simulation of Vehicle HVAV Mass Flow Prediction[D]//Proceedings of the 2015 China Society of Automotive Engineering Annual Meeting:2015:1424-1427.
- [8]朱栋华,徐慧影.基于模糊神经网络变风量空调系统风量预测研究[J].建筑节能,2010(1):22-24.ZHU D,XU H.Predictive control of VAV air-condition system based on fuzzy neural network[J].Building Energy Efficiency,2010(1):22-24.
- [9]王法军,李达君,徐春峰,等.RBF神经网络模型在风管恒风量控制中的应用[C]//2018年第九届中国制冷空调行业信息大会论文集,2018:46-48.WANG F J,LI D J,XU C F,et al.Application of RBFneural network model in air duct constant air volume control[C]//Proceedings of the 9th China Refrigeration and Air-conditioning Industry Information Conference in 2018,2018:46-48.
- [10]LEI L,CHEN W,XUE Y,et al.A comprehensive evaluation method for indoor air quality of buildings based on rough sets and a wavelet neural network[J].Building and Environment,2019,162:106296.
- [11]FAN C,XIAO F,ZHAO Y.A short-short building cooling load prediction method using deep learning algorithms[J].Applied Energy,2017,195:222-233.
- [12]WANG F,MA S,WANG H,et al.Prediction of NOx emission for coal-fired boilers based on deep belief network[J].Control Engineering Practice,2018,80:26-35.
- [13]HUANG W,SONG G,HONG H.Deep architecture for traffic flow prediction:deep belief networks with multitask learning[J].IEEE Trans on Intelligent Transportation Systems,2014,15(5):2191-2201.
- [14]LI X,ZHAO T,FAN P,et al,Rule-based fuzzy control method for static pressure reset using improved mamdani model in VAV systems[J].Journal of Building Engineering,2019,22:192-199.
- [15]伊恩·古德费洛,约书亚·本吉奥,亚伦·库维.深度学习[M].赵申剑,等译.北京:人民邮电出版社,2017.
- [16]WU Z,LI N,PENG J,et al.Using an ensemble machine learning methodology-bagging to predict occupants’thermal comfort in buildings[J].Energy and Buildings,2018,173:117-127.
- [17]苏一新,马彦会,石倩,等.基于BP神经网络模型的磁悬浮水泵PID参数优化[J].流体机械,2018,46(1):20-24.SU Y X,MA Y H,SHI Q,et al.PID parameters optimization on magnetic suspension pump based on the BP neural network model[J].Fluid Machinery,2018,46(1):20-24.
- [18]由玉文,王劲松,郭春梅,等.变风量空调系统环状管网水力特性分析[J].流体机械,2018,46(1):83-88.YOU Y W,WANG J S,GUO C M,et al.Analysis on hydraulic characteristics of annular pipe network in variable-air-volume conditioning system[J].Fluid Machinery,2018,46(1):83-88.