自适应提升小波在往复机械故障检测中的应用Adaptive Lifting Wavelet Application with Extraction of Fault Features in Reciprocating Machinery
马波,高金吉,江志农
MA Bo,GAO Jin-ji,JIANG Zhi-nong(Beijing University of Chemical Technology
摘要(Abstract):
提出了一种基于信号特征的自适应提升小波方法,即以提升小波为基础,根据信号分解后的熵来选择预测滤波器系数和更新滤波器系数,它克服了传统小波变换的不足,和提升小波只能依据信号特征来设计预测滤波器,而不能设计更新滤波器的问题。该方法用于往复机械气阀的振动信号特征提取,有效地提取了气阀的故障特征信号。实验中采用不同的小波对信号进行降噪性能比较,自适应提升方法设计的小波明显优于实验室中采用的其它小波。
Adaptive Lifting wavelet based on signal features is presented,and the entropy after signal decomposition is adopted to select predict filter coefficient and update filter coefficient.This method has avoided the shortcomings in the traditional wavelet transformation and the problems that the lifting wavelet can only design the predict filter according to signal feature,instead of update filter.It is introduced in the feature extraction of the vibration signal induced from reciprocating machinery valve,and the fault characteristic signal can be extracted effectively.According to signal denoising performance comparison using different wavelet in the experiment,wavelet based on adaptive lifting method is obviously superior to others.
关键词(KeyWords):
自适应提升;往复机械;小波;特征提取
adaptive Lifting;reciprocating machinery;wavelet;feature extraction
基金项目(Foundation): 国家自然科学基金项目(50375014,50575016)
作者(Author):
马波,高金吉,江志农
MA Bo,GAO Jin-ji,JIANG Zhi-nong(Beijing University of Chemical Technology
参考文献(References):
- [1]刘卫华,郁永章等.往复压缩机故障诊断技术研究现状与展望[J].压缩机技术,1999,(3):48-52.
- [2]杨其俊,裴俊峰,孙辉,等.小波消噪及其在往复泵振动监测信号处理中的应用[J].振动与冲击,2000,19(2):20-24.
- [3]Jing Lin,Ming J Zuo.Mechanical Fault DetectionBased on the Wavelet De-noising Technique[J].Journal of Vibration and Acoustics,2004,126:9-16.
- [4]段晨东,姜洪开,何正嘉,等.一种基于信号相关性检测的自适应小波变换及应用[J].西安交通大学学报,2004,38(7):674-677.
- [5]Sweldens W.The lifting scheme:A construction ofsecond generation wavelets[J].SIAM J.Math.A-nal,1996,29(2):511-546.
- [6]Sweldens W.The lifting scheme:Acustom-design con-struction of biorthogonal wavelets[J].Appl.ComputorHarmon Anal,1996,3(2):186-260.
- [7]Zielinski TP,Stepien J,et al.Filter Design for Adap-tive Lifting Schemes[A].Proc.European Signal Pro-cessing Conference EUSIPCO-2000[C].Tampere,Finland 2000.
- [8]Stepien J,Zielinski TP,et al.Image Denoising UsingAdaptive Lifting Schemes[A].IEEE Conf.On ImageProcessing[C].Vancouver 2000.
- [9]Claypoole Rl,Baraniuk RG.Adaptive Wavelet Trans-forms via lifting[A].IEEE Conf.On Acoustics,Speech and Signal Processing[C].Phoenix 1999.
- [10]Donoho DL.Denosing by Soft-thresholding[J].IEEETrans,Inf.Theory,1995,41(3):613-627.
- [11]Coifman RR,Donoho DL.Translation invariant de-noi-sing[A].In:Wavelets in Statistics of Lecture Notes instatistics 103[C].New York:Springer-Verlag,1994:125-150.