煤液化热高分液控阀空蚀磨损耦合研究Cavitation-wear Coupling Research on the Hydraulic Control Valve in Coal Liquefaction High Temperature and Pressure Separator
王黎,郑智剑,肖定浩,偶国富
WANG Li,ZHENG Zhi-jian,XIAO Ding-hao,OU Guo-fu
摘要(Abstract):
采用煤液化热高分液控阀的实际操作条件、工艺介质和结构特性,基于两相空化流动方程、Lagrangian固体颗粒控制方程和RNG k-ε湍流模型,开展空蚀和磨损的耦合计算。计算结果表明:在阀芯的出口处,由于流速降低导致的分离现象,会出现回流区和空化带;在阀芯和阀座的间隙处,由于局部压力降低至液相的饱和蒸汽压以下,阀芯壁面存在明显的空化区域,易发生空蚀;阀座的近壁面存在高速固体颗粒的团聚现象,易发生磨损。实际失效案例与数值计算的结果基本一致,验证了数值计算的可靠性。
According to the actual operating conditions,process medium and structural properties of hydraulic control valve in coal liquefaction high temperature and pressure separator,the cavitation-wear coupling calculation was carried out based on the two-phase cavitating flowing equation,lagrangian solid particles control equation and RNG k-ε turbulence model. The results showed that: the recirculation and cavitation region was formed in the outlet of the valve piston because of the flowing separation induced by the decreasing of flow rate; In the gap between the valve seat and piston,due to the local pressure is reduced to lower than the saturation vapor pressure of the liquid,the obvious cavitation region appeared in the wall of the valve piston and the cavitation erosion is prone to occur; the wear is also prone to happen for the agglomeration phenomenon of the high speed solid particles near the wall of the valve seat. The actual failure case is basically in accordance with the numerical simulation results,the reliability of the calculation is verified.
关键词(KeyWords):
液控阀;空蚀;磨损;数值模拟;耦合计算
hydraulic control valve;cavitation-erosion;wear;numerical simulation;coupling calculation
基金项目(Foundation):
作者(Author):
王黎,郑智剑,肖定浩,偶国富
WANG Li,ZHENG Zhi-jian,XIAO Ding-hao,OU Guo-fu
参考文献(References):
- [1]Tsukiji T,Nakayama S.Study of lateral oscillation of a popper valve for oil hydraulics[J].Transactions of JSME,Part B,1998,64(620):120-126.
- [2]Floury J,Bellettre J,Legrand J,et.al.Analysis of a new type of high pressure homogenizer.A study of the flow pattern[J].Chemical Engineering Science,2004,59:843-853.
- [3]Franzoni F,Milani M,Montorsi D L.Cavitating flows in hydraulic multidimensional CFD analysis[J].SAE International Journal of Commercial Vehicles,2009,1(1):424-436.
- [4]高红,傅新,杨华勇.锥阀阀口气穴流场的数值模拟与试验研究[J].机械工程学报,2002,38(8):27-30.
- [5]Gao H,Lin W,Fu X,et al.Supperssion of a cavitation near the orifice of a relief valve[J].Chinese Journal of Mechanical Engineering,2005,18(1):149-155.
- [6]刘建瑞,李昌,刘亮亮,等.高温高压核电闸阀流固热耦合分析[J].流体机械,2012,40(3):23-27.
- [7]孙斌,许安俊.高压止回阀断裂失效分析[J].压力容器,2012,29(1):67-72.
- [8]余建平,余龙,俞树荣,等.超超临界机组自力式液动高加给水三通阀关闭瞬态动力学分析[J].流体机械,2012,40(3):50-54.
- [9]明赐东.调节阀应用1000问[M].北京:化学工业出版社,2006.
- [10]李疆,陈皓生.Fluent环境中近壁面微空泡溃灭的仿真计算[J].摩擦学学报,2008,28(4):311-315.