露点蒸发冷却器■效率分析Efficiency Analysis of Dew-point Evaporative Cooler
徐鹏,韩泽敏,熊亚选,郑小兵
Xu Peng,Han Zemin,Xiong Yaxuan,Zheng Xiaobing
摘要(Abstract):
为了从能的"量"和"质"两方面评价露点蒸发冷却器的能源利用率,以热力学第二定律为理论基础,采用■分析法研究了进气温度、气流速度、相对湿度对该冷却器干湿通道内热能■、化学■、机械■的分布、变化以及■效率的影响。结果表明:该冷却器的效■率随着进气温度的升高,由10.6%增大到36.7%;随着进气相对湿度的增大,由21.8%降低到9.5%;随着气流速度的增大,由18.2%下降到9.1%。通过研究不同情况下的■效率可知该冷却器仍有很大的节能潜力,结合■效率可以清楚地知道露点蒸发冷却器节能的薄弱环节,从而找出减少能源损失的方法。
In order to evaluate the energy utilization rate of the dewpoint evaporative cooler from the"quantity" and "quality"of energy,based on the second law of thermodynamics,the influence of inlet temperature,airflow velocity and relative humidity on the distribution and variation of thermal exergy,chemical exergy,mechanical exergy,and exergy efficiency in the wet and dry channels of the cooler was studied by exergy analysis.The results show that the exergy efficiency of the cooler was increased from 10.6% to 36.7% with the increase of the intake air temperature,and decreased from 21.8% to 9.5% with the increase of the relative humidity of the intake air and decreased from 18.2% to 9.1% with the increase of the airflow velocity.By studying the exergy efficiency under different conditions and in combination with the exergy efficiency,it is known the cooler still has a great potential of energy saving,and the weak point of energy saving of the dewpoint evaporative cooler can be clearly known,thereby a method for reducing energy loss can be found.
关键词(KeyWords):
露点蒸发冷却器;热能■;化学■;机械■;■效率
dewpoint evaporative cooler;thermal exergy;chemical exergy;mechanical exergy;exergy efficiency
基金项目(Foundation):
作者(Author):
徐鹏,韩泽敏,熊亚选,郑小兵
Xu Peng,Han Zemin,Xiong Yaxuan,Zheng Xiaobing
参考文献(References):
- [1] 黄翔,徐方成,武俊梅.蒸发冷却空调技术在节能减排中的重要作用[J].制冷与空调,2008,8(4):17-20.
- [2] 刘佳莉,黄翔,孙哲.新型复合式露点间接蒸发冷却空调机组的试验研究[J].流体机械,2014,42(5):61-66.
- [3] Cui X,Chua K J,Yang W M,et al.Studying the performance of an improved dew-point evaporative design for cooling application[J].Applied Thermal Engineering,2014,63(2):624-633.
- [4] 褚俊杰,黄翔,孙铁柱.国内外露点间接蒸发冷却技术研究最新进展[J].流体机械,2017,45(9):71-76.
- [5] Sohani A,Sayyaadi H,Hoseinpoori S.Modeling and multi-objective optimization of an M-cycle cross-flow indirect evaporative cooler using the GMDH type neural network.international journal of refrigeration,2016(69):186-204.
- [6] 陈俊萍,黄翔,宣永梅.露点间接蒸发冷却器?分析[J].流体机械,2007,35(11):78-82.
- [7] 黄翔.国内外蒸发冷却空调研究进展[J].暖通空调,2007,37(3):32-53.
- [8] Maisotsenko.The M-cycle based cooling system[J].Air Conditioning Heating and Refrigeration News,2008,235(11):30.
- [9] 丁杰,任承钦.基于CFD方法的间接蒸发冷却器?分析[J].制冷与空调,2006,6(4):19-25.
- [10] 沈维道,童钧耕.工程热力学[M].北京:高等教育出版社,2007:173-174.
- [11] 任承钦.间接蒸发冷却?分析及板式换热器的设计与模拟研究[D].长沙:湖南大学,2001.
- [12] Kenneth Work J R.Advanced thermodynamics for engineers[M].Miley New York,1998.
- [13] 王国茂,赵潇,魏莉鸿.大开挖穿越管道热力耦合分析[J].压力容器,2018,35(2):35-42.
- [14] 李雅楠,钱才富.基于VB和ANSYS参数化建模的高压加热器应力分析和强度评定[J].压力容器,2019,36(1):48-53.
- [15] 张鸿,黄翔,杨立然,等.复合式露点间接及板管式间接蒸发冷却器的试验研究[J].流体机械,2018,46(8):60-65.
- [16] 李晗,吕建,孟丹冬,等.间接蒸发冷却器二次空气的试验研究[J].流体机械,2019,47(3):75-78.
- [17] Xu P,Ma X L.Experimental investigation of a super performance dew point air cooler[J].Applied Energy,2017(203):761-777.