基于FLUENT的涡流管内部场的数值模拟及旋流流动分析Numerical Simulation of Vortex Tube Internal Field and Analysis of Swirl Flow on the Basis of Fluent
何丽娟,李海燕,马文清,孙尚志,王淑旭
He Lijuan,Li Haiyan,Ma Wenqing,Sun Shangzhi,Wang Shuxu
摘要(Abstract):
以R41为工质对涡流管进行数值模拟,在最佳冷流率下分析了涡流管内部压力场、温度场以及流场的分布规律。模拟结果表明涡流管内部呈现明显的压力梯度和温度梯度及三维旋流流动状态,随着轴向距离的增加轴心区域压力逐渐增加而外缘区域压力逐渐减小,二者在轴向距离为60 mm后逐渐稳定为2.57 MPa;温度随着轴向距离的增加而增加,当轴向距离增加到50~60 mm时温度逐渐稳定在301 K左右;轴向速度方向存在明显的改变,并且随着轴向距离的增加转变程度逐渐降低,径向位置上随着压力差ΔP的增加轴向方向逐渐呈现逆流状态;切向速度随着轴向距离的增加逐渐减小,不同径向位置上切向速度随着压力的增加而增加。
The vortex tube was numerically simulated with R41 as the working fluid.The distribution of pressure field,temperature field and flow field inside the vortex tube was analyzed at the optimal cold flow rate.The simulation results show that the vortex tube exhibited obvious pressure gradient and temperature gradient and three-dimensional swirl flow state.As the axial distance increased,the axial region pressure increased gradually and the outer edge region pressure gradually decreased.After the axial distance was 60 mm,both were gradually stabilized at 2.57 MPa.The temperature increased with the increase of the axial distance.When the axial distance was increased to 50~60 mm,the temperature was gradually stabilized at about 301 K.There was a significant change in the axial velocity direction,and as the axial distance increased,the degree of transition gradually decreased.At the radial position,the axial direction gradually appeared countercurrent with the increase of the pressure difference ΔP.The tangential velocity decreased with increase of axial distance,and the tangential velocity increased with increase of pressure at different radial positions.
关键词(KeyWords):
数值模拟;涡流管;压力场;温度场;流场
numerical simulation;vortex tube;pressure field;temperature field;flow field
基金项目(Foundation): 国家自然科学基金项目(51566014)
作者(Author):
何丽娟,李海燕,马文清,孙尚志,王淑旭
He Lijuan,Li Haiyan,Ma Wenqing,Sun Shangzhi,Wang Shuxu
参考文献(References):
- [1]曹勇,刘加永.小流量涡流管特性的实验研究[J].工程热物理学报,2005,26(1):14-17.
- [2]曹勇,吴剑峰,罗二仓,等.涡流管研究的进展与评述[J].低温工程,2001,124(6):1-5.
- [3]张昳玮,沈荣华.涡流管喷雾海水淡化装置初探[J].广东石油化工学院学报,2018,28(1):62-64.
- [4]唐雷,鲁光亮,张雪,等.涡流管排水采气工艺在川西气田的应用[J].工艺技术,2018,21:149-150.
- [5]Seyed Ehsan Rafiee,Sadeghiazad M M.Experimental and CFD analysis on thermal performance of double-circuit vortex tube(DCVT)-geometrical optimization energy transfer and flow structural analysis[J].Applied Thermal Engineering,2018,128:1223-1237.
- [6]Karthikeya Sharma T,Amba prasad rao G,madhu murthy K.numerical analysis of a vortex tube:A review[J].Arch Computat Methods Eng,2017,24:251-280.
- [7]Hitesh R,Thakare,Ashok D,et al.Experimental investigation & CFD analysis of ranque-hilsch vortex tube[J].Energy,2017,133:284-298.
- [8]何丽娟,马文清,孙尚志,等.冷孔板直径与冷流率对涡流管流场的影响[J].低温工程,2019(2):6-11.
- [9]李文超.基于涡流管的能量分离模拟研究[J].管道技术与设备,2018(4):50-52.
- [10]胡卓焕,杨欣.涡流室直径对涡流管性能的影响[J].真空与低温,2017,23(1):52-57.
- [11]黎念,陈光明.涡流管与制冷工质的耦合特性研究[J].工程热物理学报,2019,40(1):28-35.
- [12]Aljuwayhel N F,Nellis G F,Klein S A.Parametric and internal study of the vortex tube using a CFD model[J].International Joumal of Refrigeration,2005,28:442-450.
- [13]何丽娟,潘鹏,黄艳伟,等.三维数值模拟冷孔板孔径对涡流管能量分离特性的影响[J].真空科学与技术学报,2018,38(3):252-257.
- [14]何丽娟,潘鹏,黄艳伟,等.基于Fluent的涡流管数值模拟与结构优化研究[J].真空科学与技术学报,2018,38(1):59-64.
- [15]张梦梦,崔政伟.基于FLUENT的双螺带混合机固液两相流数值模拟[J].包装与食品机械,2019,37(1):29-34.
- [16]刘超冉,赵彤,徐庆,等.气体分布板对气固流化床流化性能影响的研究[J].包装与食品机械,2019,37(6):18-24.
- [17]周少伟,姜任秋,宋福元,等.涡流管内三维强旋流流场数值模拟[J].机械工程学报,2007,43(12):229-234.
- [18]李龙,何望云,李言,等.小管径涡流管三维数值模拟及热力学过程分析[J].机械科学与技术,2016,35(5):735-739.