涡轮增压器切换过程轴向力及其形成机理Axial force and its formation mechanism in turbocharger switching process
李伟,王强,张海磊,任洋,何嘉伟,门日秀
LI Wei,WANG Qiang,ZHANG Hailei,REN Yang,HE Jiawei,MEN Rixiu
摘要(Abstract):
针对涡轮增压器止推轴承在工况变化过程中易损坏的特点,为提高止推轴承的适应性和可靠性,以某型涡轮增压器为研究对象,建立增压器压气机与涡轮的三维模型,通过ICEM划分网格,采用CFX对压气机、涡轮流场进行数值仿真,分析涡轮增压器切换过程中轴向力的形成及其变化规律。计算结果表明:各部分轴向力在切换时刻变化最大,轴向力合力主要来源于压端,且合力方向均指向压端;压端在整个切换过程中的流动发展较为顺畅,仅在叶顶出口处产生尾迹涡流;涡端在叶根和叶片中径处均存在涡流,且在叶顶位置存在流动分离现象;不论是压端还是涡端,其轮背压力分布均存在周向不均性,且压力梯度由外向内不断减小。
Aiming at the characteristics that the thrust bearing of the turbocharger is easy to be damaged in the process of changing working conditions,in order to improve the adaptability and reliability of the thrust bearing,a certain type of turbocharger is taken as the research object,and a turbocharger compressor and turbine are established.The three-dimensional model is divided into meshes by ICEM,and CFX is used to carry out numerical simulation of the compressor and turbine flow fields,and analyze the formation and variation of the axial force during the switching process of the turbocharger.The calculation results show that:the axial force of each part changes the most at the switching time,the resultant axial force mainly comes from the pressure end,and the direction of the resultant force all points to the pressure end;the flow development of the pressure end is relatively smooth during the whole switching process,and only at the tip of the blade.The wake vortex is generated at the outlet;the vortex end exists at the blade root and the middle diameter of the blade,and there is a flow separation phenomenon at the tip;no matter it is the pressure end or the vortex end,the pressure distribution of the wheel back has a circumferential inhomogeneity,and the pressure gradient decreases from outside to inside.
关键词(KeyWords):
涡轮增压器;轴向力;切换时刻;数值模拟
turbocharger;axial aerodynamic force;switching time;numerical simulation
基金项目(Foundation): 国家自然科学基金项目(51275489)
作者(Author):
李伟,王强,张海磊,任洋,何嘉伟,门日秀
LI Wei,WANG Qiang,ZHANG Hailei,REN Yang,HE Jiawei,MEN Rixiu
参考文献(References):
- [1]张启华.叶轮机械流体力学基础[M].北京:科学出版社,2016.ZHANG Q H.Fundamentals of impeller mechanical fluid mechanics[M].Beijing:Science Press,2016.
- [2]叶涛,陈飞.涡轮增压压气机叶轮的气动优化设计[J].流体机械,2017,45(8):24-28.YE T,CHEN F.Aerodynamic optimization design of turbocharger compressor impeller[J].Fluid Machinery,2017,45(8):24-28.
- [3]刘思蓉,王强,任洋,等.涡轮增压器压气机流场仿真分析[J].流体机械,2018,46(3):23-27.LIU S R,WANG Q,REN Y,et al.Simulation analysis of compressor flow field in turbocharger[J].Fluid Machinery,2018,46(3):23-27.
- [4]冀春俊,李晓庆,余道刚.增压器压气机流动分析与全工况优化[J].流体机械,2012,40(1):26-30.JI C J,LI X Q,YU D G.Numerical flow analysis and overall operating performance optimization of a turbocharger compressor[J].Fluid Machinery,2012,40(1):26-30.
- [5]STEPANNOFF A J.Centrifugal and axial flow pump[D].New York:John Wiley and Sons,Inc,1958:1068-1073.
- [6]BERNHARDT LüDDECKE,PHILIPP NITSCHKE,MICHAEL DIETRICH,et al.Unsteady thrust force loading of turbocharger rotor during engine operation[J].Journal of Engineering for Gas Turbines and Power,2015,138(1):012301.
- [7]LEE INBEOM,HONG SEONGKI,KIM YOUNGCHUL,et al.Prediction of axial thrust load under turbocharger operating conditions[J].Transactions of the Korean Society of Auto-motive Engineers,2016,24(6):642-648.
- [8]李伟,施卫东,蒋小平,等.多级离心泵轴向力的数值计算与试验研究[J].农业工程学报,2012,28(23):52-59.LI W,SHI W D,JIANG X P.Numerical calculation and experimental study of the axial force of multistage centrifugal pumps[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(23):52-59.
- [9]洪汉池,胡辽平,黄红武等.车用涡轮增压器转子轴向力试验研究[J].农业装备与车辆工程,2010(4):8-9.HONG H C,HU L P,HUANG H W,et al.Experimental study on the axial force of the turbocharger rotor for vehicles[J].Agricultural Equipment and Vehicle Engineering,2010(4):8-9.
- [10]王云龙,张虹,田锐.车用涡轮增压器转子轴向力数值计算与分析[J].机械设计与制造,2014(3):37-40.WANG Y L,ZHANG H,TIAN R.Numerical calculation and analysis of axial force of turbocharger rotor for vehicle[J].Machine Design and Manufacturing,2014(3):37-40.
- [11]任洋.涡轮增压器压气机流场分析与气动轴向作用力仿真研究[D].太原:中北大学,2017.REN Y.Turbocharger compressor flow field analysis and aerodynamic axial force simulation study[D].Taiyuan:North University of China,2017.
- [12]刘思蓉.车用涡轮增压器转子轴向气动作用力分析[D].太原:中北大学,2018.LIU S R.Analysis of the axial aerodynamic force of the turbocharger rotor for vehicles[D].Taiyuan:North University of China,2018.
- [13]刘思蓉,王强,任洋,等.涡轮增压器压气机流场仿真分析[J].流体机械,2018,46(3):23-27.LIU S R,WANG Q,REN Y,et al.Simulation analysis of turbocharger compressor flow field[J].Fluid Machinery,2018,46(3):23-27.
- [14]张海磊,王强,任洋,等.车用涡轮增压器轴向气动作用力分析[J].机床与液压,2019,47(10):77-81.ZHANG H L,WANG Q,REN Y,et al.Analysis of axial aerodynamic force of vehicle turbocharger[J].Machine Tool and Hydraulics,2019,47(10):77-81.
- [15]朱大鑫.涡轮增压与涡轮增压器[M].北京:机械工业出版社,1992.ZHU D X.Turbocharged and turbocharger[M].Beijing:Mechanical Industry Press,1992.