集成式CO_2超市制冷系统的研究进展Latest research progress of integrated CO_2 supermarket refrigeration system
耿旭东,周啸虎,邵双全,李锋,司春强,马进
GENG Xudong,ZHOU Xiaohu,SHAO Shuangquan,LI Feng,SI Chunqiang,MA Jin
摘要(Abstract):
由于良好的环境性能和热力学性能,天然制冷剂CO_2在商业集成制冷系统中逐渐得到推广应用,本文归纳了集成式CO_2超市制冷系统的最新研究进展。首先对目前CO_2超市制冷系统中主要的热回收方式以及控制策略进行了汇总;随后对集成的空气调节功能进行了介绍,主要包括其与不同循环优化措施结合的效果;最后对目前应用较广的“多合一”CO_2超市制冷系统的应用情况进行了介绍。结果表明:采用热回收能够有效满足超市的热水需求以及供暖负荷,同时相比于传统供暖方式,能耗可以下降7.5%~12.9%;对集成的空气调节功能,其季节能效比能够达到4.0以上;对“多合一”CO_2超市制冷系统,超市的制冷、供暖和空气调节负荷都可以由CO_2系统来提供,并且优化后的系统能够有效减少系统的占地面积及温室气体排放量。
Because of good environmental and thermal performance of natural refrigerant CO_2,it is gradually popularized and applied in commercial integrated refrigeration system.The research progress of integrated CO_2 supermarket refrigeration system was summarized.Firstly,current application methods and research on control strategies for heat recovery were summarized.Secondly,integrated air-conditioning function was studied and the effect of combining it with different cycle optimization measures was analyzed.Finally,the application of all-in-one CO_2 refrigeration system was introduced.The results indicate that heat recovery can be adopted to effectively meet the hot water demand and heating demand of supermarket.At the same time,compared with traditional heating methods,its energy consumption can be reduced by 7.5%~12.9%.For the integrated air-conditioning function,its seasonal energy efficiency ratio can reach more than 4.0.For the all-in-one solution,the supermarket’s refrigeration,heating and air conditioning loads all can be provided by the CO_2 system,and the energy consumption and greenhouse gas emissions can be significantly reduced with the optimized refrigeration system.
关键词(KeyWords):
超市制冷;二氧化碳;集成;热回收;区域供暖
supermarket refrigeration;carbon dioxide;integration;heat recovery;district heating network
基金项目(Foundation): 国家重点研发计划项目(2019YFF0301504);; 国家自然科学基金项目(52076085)
作者(Author):
耿旭东,周啸虎,邵双全,李锋,司春强,马进
GENG Xudong,ZHOU Xiaohu,SHAO Shuangquan,LI Feng,SI Chunqiang,MA Jin
参考文献(References):
- [1]GULLO P,HAFNER A,BANASIAK K.Transcritical R744 refrigeration systems for supermarket applications:current status and future perspectives[J].International Journal of Refrigeration,2018,93:269-310.
- [2]BESHR M,AUTE V,SHARMA V,et al.A comparative study on the environmental impact of supermarket refrigeration systems using low GWP refrigerants[J].International Journal of Refrigeration,2015,56:154-164.
- [3]SOOBEN D,PUROHIT N,MOHEE R,et al.R744 refrigeration as an alternative for the supermarket sector in small tropical island developing states:the case of mauritius[J].International Journal of Refrigeration,2019,103:264-273.
- [4]GE Y T,TASSOU S A.Thermodynamic analysis of transcritical CO2 booster refrigeration systems in supermarket[J].Energy Conversion and Management,2011,52(4):1868-1875.
- [5]SHILLIDAY J A.Investigation and optimisation of commercial refrigeration cycles using the natural refrigerant CO2[D].London:Brunel University,2012.
- [6]ZOLCER SKA?ANOVá K,BATTESTI M.Global market and policy trends for CO2 in refrigeration[J].International Journal of Refrigeration,2019,107:98-104.
- [7]TASSOU S A,GE Y,HADAWEY A,et al.Energy consumption and conservation in food retailing[J].Applied Thermal Engineering,2011,31(2-3):147-156.
- [8]CUI Q,GAO E,ZHANG Z,et al.Preliminary study on the feasibility assessment of CO2 booster refrigeration systems for supermarket application in China:An energetic,economic,and environmental analysis[J].Energy Conversion and Management,2020,225:113422.
- [9]GULLO P,ELMEGAARD B,CORTELLA G.Energy and environmental performance assessment of R744 booster supermarket refrigeration systems operating in warm climates[J].International Journal of Refrigeration,2016,64:61-79.
- [10]KIM M.Fundamental process and system designissues in CO2 vapor compression systems[J].Progress in Energy and Combustion Science,2004,30(2):119-174.
- [11]BANSAL P.A review-Status of CO2 as a low temperature refrigerant:fundamentals and R&D opportunities[J].Applied Thermal Engineering,2012,41:18-29.
- [12]BRUNO F,BELUSKO M,HALAWA E.CO2 refrigeration and heat pump systems——a comprehensive review[J].Energies,2019,12(15):2959.
- [13]宋昱龙,王海丹,殷翔,等.跨临界CO2蒸气压缩式制冷与热泵技术综述[J].制冷学报,2021,42(2):1-24.SONG Y L,WANG H D,YIN X,et al.Review of transcritical CO2 vapor compression technology in refrigeration and heat pump[J].Journal of Refrigeration,2021,42(2):1-24.
- [14]YU B B,YANG J Y,WANG D D,et al.An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle[J].Energy,2019,189:116147.
- [15]宗硕,宋昱龙,曹锋.跨临界CO2喷射器系统优化调节技术综述[J].流体机械,2021,49(7):50-56.ZONG S,SONG Y L,CAO F.A review on optimal regulation technology for transcritical CO2 ejector system[J].Fluid Machinery,2021,49(7):50-56.
- [16]黄龙飞,曹锋.跨临界CO2循环中过冷强化技术的发展综述[J].流体机械,2021,49(1):88-96.HUANG L F,CAO F.Review of the development of subcooling enhancement technology in transcritical CO2 cycle[J].Fluid Machinery,2021,49(1):88-96.
- [17]MA Y,LIU Z,TIAN H.A review of transcritical carbon dioxide heat pump and refrigeration cycles[J].Energy,2013,55:156-172.
- [18]TIAN H,YANG Z,MINXIA L I,et al.Research and application of CO2 refrigeration and heat pump cycle[J].Science in China,2009,52(6):1563-1575.
- [19]SAWALHA S.Using CO2 in supermarket refrigeration[J].ASHRAE Journal,2005,47(8):26-30.
- [20]王长江,李丽娜,韩爽,等.二氧化碳在冷冻冷藏系统中循环方式的分析[J].制冷技术,2020,40(5):73-76.WANG C J,LI L N,HAN S,et al.Analysis of circulation type of CO2 in freezing and cold storage system[J].Chinese Journal of Refrigeration Technology,2020,40(5):73-76.
- [21]SAWALHA S,KARAMPOUR M,ROGSTAM J.Field measurements of supermarket refrigeration systems.part I:analysis of CO2 trans-critical refrigeration systems[J].Applied Thermal Engineering,2015,87:633-647.
- [22]CATALáN-GIL J,LLOPIS R,SáNCHEZ D,et al.Energy analysis of dedicated and integrated mechanical subcooled CO2 boosters for supermarket applications[J].International Journal of Refrigeration,2019,101:11-23.
- [23]GULLO P,TSAMOS K,HAFNER A,et al.State-of-the-art technologies for transcritical R744 refrigeration systems-a theoretical assessment of energy advantages for European food retail industry[J].Energy Procedia,2017,123:46-53.
- [24]SHARMA V,FRICKE B,BANSAL P.Comparative analysis of various CO2 configurations in supermarket refrigeration systems[J].International Journal of Refrigeration,2014,46:86-99.
- [25]MITSOPOULOS G,SYNGOUNAS E,TSIMPOUKIS D,et al.Annual performance of a supermarket refrigeration system using different configurations with CO2 refrigerant[J].Energy Conversion and Management:X,2019(1):100006.
- [26]KARAMPOUR M,SAWALHA S.State-of-the-art integrated CO2 refrigeration system for supermarkets:a comparative analysis[J].International Journal of Refrigeration,2018,86:239-257.
- [27]GULLO P.Impact and quantification of various individual thermodynamic improvements for transcritical R744 supermarket refrigeration systems based on advanced exergy analysis[J].Energy Conversion and Management,2021,229:113684.
- [28]GULLO P,TSAMOS K M,HAFNER A,et al.Crossing CO2 equator with the aid of multi-ejector concept:A comprehensive energy and environmental comparative study[J].Energy,2018,164:236-263.
- [29]GULLO P,HAFNER A,CORTELLA G.Multi-ejector R744 booster refrigerating plant and air conditioning system integration-a theoretical evaluation of energy benefits for supermarket applications[J].International Journal of Refrigeration,2017,75:164-176.
- [30]HUANG Z,ZHAO H,YU Z,et al.Simulation and optimization of a R744 two-temperature supermarket refrigeration system with an ejector[J].International Journal of Refrigeration,2018,90:73-82.
- [31]LATA M,GUPTA D K.Performance evaluation and comparative analysis of trans-critical CO2 booster refrigeration systems with modified evaporative cooled gas cooler for supermarket application in Indian context[J].International Journal of Refrigeration,2020,120:248-259.
- [32]YANG H,RONG L,LIU X,et al.Experimental research on spray evaporative cooling system applied to air-cooled chiller condenser[J].Energy Reports,2020(6):906-913.
- [33]BELUSKO M,LIDDLE R,ALEMU A,et al.Performance evaluation of a CO2 refrigeration system enhanced with a dew point cooler[J].Energies,2019,12(6):1079.
- [34]SUN Z,LI J,LIANG Y,et al.Performance assessment of CO2 supermarket refrigeration system in different climate zones of China[J].Energy Conversion and Management,2020,208:112572.
- [35]LIU S,WANG J,DAI B,et al.Alternative positions of internal heat exchanger for CO2 booster refrigeration system:thermodynamic analysis and annual thermal performance evaluation[J].International Journal of Refrigeration,2021.
- [36]TORRELLA E,SáNCHEZ D,LLOPIS R,et al.Energetic evaluation of an internal heat exchanger in a CO2 transcritical refrigeration plant using experimental data[J].International Journal of Refrigeration,2011,34(1):40-49.
- [37]杨俊兰,李金芮,白杨,等.带回热器CO2跨临界热泵系统的性能分析[J].流体机械,2021,49(11):33-40.YANG J L,LI J R,BAI Y,et al.Performance analysis of CO2 transcritical heat pump system with internal heat exchanger[J].Fluid Machinery,2021,49(11):33-40.
- [38]PUROHIT N,GUPTA D K,DASGUPTA M S.Energetic and economic analysis of trans-critical CO2 booster system for refrigeration in warm climatic condition[J].International Journal of Refrigeration,2017,80:182-196.
- [39]SAWALHA S.Investigation of heat recovery in CO2 trans-critical solution for?supermarket refrigeration[J].International Journal of Refrigeration,2013,36(1):145-156.
- [40]KARAMPOUR M,SAWALHA S.Performance and control strategies analysis of a CO2 trans-critical booster system[C]//IIR International Conference on Sustainability & the Cold Chain,2014.
- [41]KARAMPOUR M,SAWALHA S.Theoretical analysis of CO2 trans-critical system with parallel compression for heat recovery and air conditioning in supermarkets[J].Proceedings of the 24th IIR International Congress of Refrigeration:Yokohama,Japan,August 16-22,2015:2321-2328.
- [42]SHI L,INFANTE FERREIRA C,GERRITSEN J,et al.Control strategies of CO2 refrigeration/heat pump system for supermarkets[C]//Proceedings 12th IEA Heat Pump Conference,2017.
- [43]KARAMPOUR M,SAWALHA S.State-of-the-art integrated CO2 refrigeration system for supermarkets:a comparative analysis[J].International Journal of Refrigeration,2018,86:239-257.
- [44]POLZOT A,GULLO P,D’AGARO P,et al.Performance evaluation of a R744 booster system for supermarket refrigeration,heating and DHW:12th IIR Gustav Lorentzen Conference on Natural Refrigerants (GL2016)[C]//Proceedings.édimbourg,United Kingdom,August 21st-24th 2016,2016.
- [45]COLOMBO I,MAIDMENT G G,CHAER I,et al.Carbon dioxide refrigeration with heat recovery for supermarkets[J].International Journal of Low-Carbon Technologies,2014,9(1):38-44.
- [46]D’AGARO P,CORTELLA G,POLZOT A.R744 booster integrated system for full heating supply to supermarkets[J].International Journal of Refrigeration,2018,96:191-200.
- [47]POLZOT A,D’AGARO P,CORTELLA G.Energy analysis of a transcritical CO2 supermarket refrigeration system with heat recovery[J].Energy Procedia,2017,111:648-657.
- [48]SARABIA ESCRIVA E J,ACHA S,LE BRUN N,et al.Modelling of a real CO2 booster installation and evaluation of control strategies for heat recovery applications in supermarkets[J].International Journal of Refrigeration,2019,107:288-300.
- [49]AZZOLIN M,CATTELAN G,DUGARIA S,et al.Integrated CO2 systems for supermarkets:Field measurements and assessment for alternative solutions in hot climate[J].Applied Thermal Engineering,2021,187:116560.
- [50]MAOURIS G,SARABIA ESCRIVA E J,ACHA S,et al.CO2 refrigeration system heat recovery and thermal storage modelling for space heating provision in supermarkets:An integrated approach[J].Applied Energy,2020,264:114722.
- [51]POLZOT A,D’AGARO P,GULLO P,et al.Modelling commercial refrigeration systems coupled with water storage to improve energy efficiency and perform heat recovery[J].International Journal of Refrigeration,2016,69:313-323.
- [52]KARAMPOUR M,MATEU-ROYO C,ROGSTAM J,et al.Geothermal storage integration into a supermarket’s CO2 refrigeration system[J].International Journal of Refrigeration,2019,106:492-505.
- [53]GIUNTA F,SAWALHA S.Techno-economic analysis of heat recovery from supermarket’s CO2 refrigeration systems to district heating networks[J].Applied Thermal Engineering,2021,193:117000.
- [54]ARNAUDO M,GIUNTA F,DALGREN J,et al.Heat recovery and power-to-heat in district heating networks-A techno-economic and environmental scenario analysis[J].Applied Thermal Engineering,2021,185:116388.
- [55]ZüHLSDORF B,CHRISTIANSEN A R,HOLM F M,et al.Analysis of possibilities to utilize excess heat of supermarkets as heat source for district heating[J].Energy Procedia,2018,149:276-285.
- [56]GE Y T,TASSOU S A.Control optimizations for heat recovery from CO2 refrigeration systems in supermarket[J].Energy Conversion and Management,2014,78:245-252.
- [57]PARDI?AS á á,HAFNER A,BANASIAK K.Novel integrated CO2 vapour compression racks for supermarkets.Thermodynamic analysis of possible system configurations and influence of operational conditions[J].Applied Thermal Engineering,2018,131:1008-1025.
- [58]KARAMPOUR M,SAWALHA S.Energy efficiency evaluation of integrated CO2 trans-critical system in supermarkets:a field measurements and modelling analysis[J].International Journal of Refrigeration,2017,82:470-486.
- [59]D’AGARO P,COPPOLA M A,CORTELLA G.Field tests,model validation and performance of a CO2 commercial refrigeration plant integrated with HVAC system[J].International Journal of Refrigeration,2019,100:380-391.
- [60]PUROHIT N,SHARMA V,SAWALHA S,et al.Integrated supermarket refrigeration for very high ambient temperature[J].Energy,2018,165:572-590.
- 超市制冷
- 二氧化碳
- 集成
- 热回收
- 区域供暖
supermarket refrigeration - carbon dioxide
- integration
- heat recovery
- district heating network