带有方腔的管道流动流场的有限元数值模拟Finite Element Numerical Simulation of the Flow Field in a Pipe with a Square-cavity
高殿荣,郭明杰,李华
GAO Dian-rong1;GUO Ming-jie1;LI Hua2(1.Yanshan University;
摘要(Abstract):
利用有限元法对带有容腔的管道流动进行了数值计算 ,获得了管道中和容腔中速度场与涡旋随时间变化及发展规律。模拟结果表明 ,带有容腔的管道流动流场在过渡过程中 ,容腔中的涡旋随时间逐渐增大 ;到达稳定状态时 ,容腔中的涡旋尺寸最大 ,并基本保持不变。为了维持容腔中涡旋的运动 ,必然要消耗管道中主流的能量 ,从而造成整个管道中的能量损失。研究结果对于设计和分析带有容腔管道结构具有一定的实际意义。
The finite element method (FEM) is used to c al culate the flow field of the flow in a pipe with square-cavity. The velocity ve ctors and the vortex varying with time and their developing characteristic have been achieved.The results indicate that the flow field in a pipe with a square- cavity is changing with time during transient process. The size of the vortex in the cavity is getting bigger and bigger. When the steady state is reached, the size of the vortex in the cavity is the biggest and is kept unchanging. Since th e vortex in the cavity keeps rotating, energy in the main flow must be consumed, then the energy loss is produced. The study has significance for designing and analyzing the pipe with square-cavity.
关键词(KeyWords):
方腔;剪切流动;数值计算;有限元;能量损失
square-cavity;shear flow;numerical simulati on;finite element method;energy loss
基金项目(Foundation):
作者(Authors):
高殿荣,郭明杰,李华
GAO Dian-rong1;GUO Ming-jie1;LI Hua2(1.Yanshan University;
参考文献(References):
- [1] 张修忠,王光谦.方腔回流区水流特性三维数值模拟[J]水科学进展,2003,(1):18
- [2] 郭新贵,倪福生,洪锡军高Re数下N -S方程有限元数值解法研究[J].河海大学学报(自然科学版),2001,29(3):6568
- [3] 刘宏,傅德薰,马延文.迎风紧致格式与驱动方腔流动问题的直接数值模拟[J].中国科学(A辑),1993,26(6):657665
- [4] 陈雪江,秦国良,徐忠.谱元法和高阶时间分裂法求解方腔顶盖驱动流[J].计算力学学报,2002,19(3):281285
- [5] 詹言民.边界拟合坐标系下的差分有限元破开算子法[J].力学学报,2002,34(4):616621
- [6] 魏金风,曾德顺,黄自萍.求解非定常不可压Navier-Stokes方程的一种新方法[J].同济大学学报(自然科学版),2001,(11):15
- [7] KuhlmannHC ,WanschuraM ,RathHJ .Flowintwo sidedlid drivencavities:non uniqueness,instabilities,andcellularstructures[J].J .FluidMech.,1977,336:267299
- [8] 陈庆光,张永健,钱宝光.QUICK和乘方格式在顶盖驱动方腔流动计算中的比较[J].山东科技大学学报(自然科学版),2002,21(1):811
- [9] WendtJohnF .ComputationalFluidDynamics:AnIntro duction2ndedition[M].BerlinHeidelberg,SpringerVer lag,1996
- [10] ChungTJ .FiniteElementMethodinFluidDynamics[M].NewYork,McGrawHill,Inc.,1978.
- [11] BakerAJ .FiniteElementSolutionAlgorithmforIncom pressibleFluidDynamics[M ].NewYork,JohnWileyandSonsInc.,1975