流体机械

2009, v.37;No.v.37(07) 28-32+12

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于PCA-SVM集成阀门故障诊断方法研究
A Fault Detection and Diagnosis Method Base on Principal Component Analysis and Support Vector Classifier Apply to Valve

杨海荣,薄翠梅,龚伟俊,张广明
YANG Hai-rong,BO Cui-mei,GONG Wei-jun,ZHANG Guang-ming(Nanjing University of Technology

摘要(Abstract):

提出了一种基于主元分析和支持向量多分类器的故障诊断方法。该方法首先对工业故障数据进行主元分析提取数据集特征并降低数据维数,再把故障特征数据通过支持向量多分类器进行模式分类,最后通过特征分类诊断故障。在DAMADICS阀门模型上进行了仿真,并利用Lublin Sugar Factory工业故障数据进行了验证。仿真结果表明该方法可以快速准确地检测与诊断故障。
The principal component analysis and support vector multi-classifier of the fault diagnosis method is introduced,first of all,the failure data has been extracted PCA data sets and reduce the characteristics of the data dimension,Second,the failure characteristics data has been classified by support vector classifier,final diagnosis failure by features.Some simulations were carried out on DAMADICS valve model and Lublin Sugar Factory failure data is used to further verify.The simulation results show that the method can detection and diagnosis failure fast and accurately.

关键词(KeyWords): 主元分析;支持向量机;故障诊断;阀门故障
principal component analysis;support vector machines;fault diagnosis;valve failure

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金项目(60804027);; 江苏省自然科学基金项目(BK2006176);; 江苏省工业装备数学制造及控制技术重点实验项目(BM2007201);; 江苏省高校自然科学基金项目(07KJB510042)

作者(Author): 杨海荣,薄翠梅,龚伟俊,张广明
YANG Hai-rong,BO Cui-mei,GONG Wei-jun,ZHANG Guang-ming(Nanjing University of Technology

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享