超声射流系统设计及仿真分析Simulation analysis and design of ultrasonic jet system
何魁魁,戴玉堂,王嘉凯
HE Kuikui,DAI Yutang,WANG Jiakai
摘要(Abstract):
为了改善超快激光的加工效果,设计了超声气体射流系统。通过超声与射流的耦合可实现声能与射流压力能叠加,增强射流的脉动性,形成脉动射流。以氮气为传递介质,利用FLUENT软件研究了在稳态条件下不同喷头结构的流场分布并对喷头结构进行优化;在瞬态湍流状态下,运用动网格技术将超声与射流场耦合,仿真分析了超声振动参数对流场分布的影响以及各参数间相互作用规律。仿真结果表明:在超声频率20 kHz、幅值为20 μm、进口流速2 mm/s条件下,流场最大流速从4.01 mm/s增至21.19 mm/s,随入口流速增加出口流速增幅逐渐下降,在高速射流入口条件下,出口最大流速也增加近两倍左右。在超声作用下射流脉动性显著增强,但射流流束的集中性会减弱,超声振幅的改变只能对射流场结构产生改变,对射流最大流速几乎无影响,超声频率的增加可提高流场最大流速及其脉动性。
In order to improve the machining effect of ultra-fast laser,an ultrasonic gas jet system was designed.Through the coupling of ultrasonic and jet,the superposition of sound energy and jet pressure energy can be realized,and the pulsation of jet can be enhanced to form pulsation jet.Taking nitrogen as the transfer medium,FLUENT was used to study the flow field distribution of different nozzle structures under steady state conditions and optimize the nozzle structure.In the transient turbulent state,the ultrasonic and jet fields were coupled with the dynamic grid technology,and the influence of ultrasonic vibration parameters on the flow field distribution and the interaction law of parameters were simulated and analyzed.Simulation results show that under the ultrasonic frequency of 20 kHz,amplitude of 20 μm and inlet flow speed of 2 mm/s,the maximum flow rate increases from 4.01 mm/s to 21.19 mm/s,and the increase of outlet flow rate decreases gradually with the increase of inlet flow speed.However,under the condition of high-speed jet inlet,the maximum flow speed at outlet increases nearly twice.Furthermore,the double fluid pulsation was significantly enhanced under ultrasound,but the concentration of jet flow beam is weakened,ultrasonic amplitude changes can only change the jet flow field structure,but has almost no effect on the biggest jet velocity.The increase of ultrasonic frequency can improve the maximum velocity and pulsation of the flow field.
关键词(KeyWords):
超声射流;FLUENT仿真;动网格技术;射流喷嘴;超快激光
ultrasonic jet;FLUENT simulation;dynamic mesh;jet nozzle;ultrafast laser
基金项目(Foundation): 国家自然科学基金项目(51975442)
作者(Author):
何魁魁,戴玉堂,王嘉凯
HE Kuikui,DAI Yutang,WANG Jiakai
参考文献(References):
- [1]MOHAMMAD L,JAVAD A.Finite element simulation of ultrasonic-assisted machining:a review[J].The International Journal of Advanced Manufacturing Technology,2021,116:2777-2796.
- [2]黄安楠,张震,傅波,等.超声辅助射流电解加工的仿真及实验[J].应用声学,2021:1-13.HUANG A N,ZHANG Z,FU B,et al.Simulation and experiment of ultrasonic assisted jet electrochemical machining[J].Application of Acoustic,2021:1-13.
- [3]SAFFAR SABER,ABDULLAH AMIR.Experimental investigation on ultrasonic assisted drilling(UAD)[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2021,43(7):351.
- [4]ALAVI S H.Effect of vibration frequency and displacement on melt expulsion characteristics and geometric parameters for ultrasonic vibration-assisted laser drilling of steel[J].Ultrasonics,2018,94:1-9.
- [5]陈正文,阮晓峰,邹佳林,等.磨料水射流切割碳纤维复合材料的表面粗糙度试验[J].中国机械工程,2019,30(11):1315-1321.CHEN Z W,RUAN X F,ZOU J L,et al.Experimental study on surface roughness of carbon fiber composites cut by abrasive water jet[J].China Mechanical Engineering,2019,30(11):1315-1324.
- [6]管华双,姜晨,李佳音,等.微通道反应器沟槽底面的磨料水射流抛光研究[J].流体机械,2021,49(3):8-13.GUAN H S,JIANG C,LI J Y,et al.Abrasive water Jet polishing of groove bottom in a microchannel reactor[J].Fluid Machinery,2021,49(3):8-13.
- [7]田家林,胡志超,刘松,等.磨料水射流仿真分析与试验研究[J].流体机械,2021,49(2):8-13.TIAN J L,HU Z C,LIU S,et al.Simulation analysis and experimental study of abrasive water jet[J].Fluid Machinery,2021,49(2):8-13.
- [8]TANGWARODOMNUKUN V,WANG J,HUANG C Z,et al.An investigation of hybrid laser-waterjet ablation of silicon substrates[J].International Journal of Machine Tools & Manufacture,2012,56:39-49.
- [9]FENG S C,HUANG C Z.An analytical model for the prediction of temperature distribution and evolution in hybrid laser-waterjet micro-machining[J].Precision Engineering,2016,47:33-45.
- [10]JIA ZHOU.Study on the mechanism of ultrasonic-assisted water confined laser micromachining of silicon[J].Optics and Lasers in Engineering,2020,132:106-118.
- [11]陈雪松,侯荣国,吕哲,等.超声辅助磨料水射流加工机制及去除模型研究[J].机床与液压,2020,48(17):79-82.CHEN X S,HOU G R,LYU Z,et al.Study on machining mechanism and removal model of ultrasonic assisted abrasive water jet[J].Machine Tools and Hydraulics,2020,48(17):79-82.
- [12]薛胜雄.高压水射流技术工程[M].合肥:合肥工业大学出版社,2006.XUE S X.High pressure water jet technology project[M].Hefei:Hefei University of Technology Publishers,2006.
- [13]朱约钧.FLUENT15.0流场分析实战指南[M].北京:人民邮电出版社.2015.ZHU Y J.FLUENT15.0 Flow field analysis guide[M].Beijing:Publishing house of Posts and Telecommunications,2015.
- [14]徐茹,王文娥,胡笑涛.小麦不同生育期微喷带水量分布均匀性[J].排灌机械工程学报,2021,39(8):859-864.XU R,WANG W E,HU X T.Water distribution uniformity of micro spray belt in different growth stages of wheat[J].Journal of Drainage and Irrigation Machinery Engin,2021,39(8):859-864.
- [15]田柳,徐赐军,黄浩,等.三维CAD模型检索方法的优化研究[J].机电工程,2021,38(4):453-457.TIAN L,XU C J,HUANG H,et al.Optimization for 3D CAD model retrieval method[J].Journal of Mechanical & Electrical Engineering,2021,38(4):453-457.
- [16]MANU R,BANU N R.An erosion-based model for abrasive waterjet turning of ductile materials[J].Wear,2009,266:1091-1097.