可调文丘里管水力空化发生特性研究Study on hydraulic cavitation occurrence characteristics of adjustable Venturi tube
张阳,李杰
ZHANG Yang,LI Jie
摘要(Abstract):
为探究可调式文丘里管内部流场的空化特性,采用k-ε湍流模型和Zwart空化模型,利用FLUENT软件模拟不同参数条件下对空泡分布、流场压力、流速等空化特性的影响规律,并结合高速摄影系统进行试验验证。研究表明:在一定范围内增大流场的入口压力,可以提高空化效果,但会受到结构参数的限制;出口压力主要作用于下游流场,影响空泡发展,出口压力越大,空化程度越弱;增大空化器的喉部直径,流体的扰动强度和变化梯度下降,空泡数量减少。试验与仿真结果表明,当入口压力为0.9 MPa、出口压力为大气压、喉部直径为1.5 mm时,该装置产生空化现象的效率最高。
In order to explore cavitation characteristics of internal flow field in adjustable Venturi tube,based on the k-ε turbulence model and Zwart cavitation model,FLUENT flow field calculation software was used to simulate the influences of different parameters on cavitation characteristics such as cavitation distribution,flow field pressure and velocity.Experimental verification was carried out in combination with high speed camera system.The results show that the cavitation effect can be improved by increasing the inlet pressure in a certain range,but it will be limited by the structural parameters.The outlet pressure mainly acts on the downstream flow field and affects the development of cavitation.The increase of outlet pressure results in the decrease of cavitation degree.With the increase of the throat diameter of the cavitator,the disturbance intensity and change gradient of the fluid decrease,and the number of cavitation decreases.The results show that when the inlet pressure is 0.9 MPa,the outlet pressure is atmospheric pressure,and the throat diameter is 1.5 mm,and the device has the highest efficiency in generating cavitation.
关键词(KeyWords):
水力空化;文丘里管;可调;流场特性
hydraulic cavitation;Venturi tube;adjustable;flow field characteristics
基金项目(Foundation): 国家自然科学基金项目(51975006);; 北京市委组织部优秀人才项目(2016000020124G026)
作者(Author):
张阳,李杰
ZHANG Yang,LI Jie
参考文献(References):
- [1]汪朝晖,胡亚男,饶长健,等.自激振荡脉冲喷嘴空化效应及其射流形态的数值分析[J].中国机械工程,2017,28(13):1535-1541.WANG Z H,HU Y N,RAO C J,et al.Numerical analysis of cavitation effects of self-excited oscillation pulse nozzles and jet forms[J].China Mechanical Engineering,2017,28(13):1535-1541.
- [2]WANG B W,SU H J,ZHANG B.Hydrodynamic cavitation as a promising route for wastewater treatment-a review[J].Chemical Engineering Journal,2021,412:1-29.
- [3]LIU Z C,WANG X Q,FAN W J,et al.Study on some properties of hydrodynamic cavitation damage[J].IOP Conference Series:Earth and Environmental Science,2018,168(1):1-7.
- [4]孙毅,祝利豪,毛亚郎,等.近球壁射流空泡溃灭对微细颗粒破碎效果的影响[J].中国机械工程,2020,31(24):2910-2917.SUN Y,ZHU L H,MAO Y L,et al.Effects of bubble collapse of near-ball wall jet flows on crushing effectiveness of fine particles[J].China Mechanical Engineering,2020,31(24):2910-2917.
- [5]王智勇,张晓冬,杨会中.文丘里管中空化流场的数值模拟[J].计算机与应用化学,2006,23(10):939-942.WANG Z Y,ZHANG X D,YANG H Z.Numerical simulation of cavitation flow field in the venturi[J].Computers and Applied Chemistry,2006,23(10):939-942.
- [6]DONG Z Y,YANG Y G,CHEN Q Q,et al.A Study of hydraulic characteristics of multi-square-hole orifice plates[J].Applied Mechanics and Materials,2013,2156:2470-2473.
- [7]DONG Z Y,CHEN Q Q,YANG Y G,et al.Experimental and numerical study of hydrodynamic cavitation of orifice plates with multiple triangular holes[J].Applied Mechanics and Materials,2013,2156:2519-2522.
- [8]ZHANG K,DONG Z Y,YAO R H.Pressure characteristics of hydrodynamic cavitation reactor due to the combination of venturi tubes with multi-orifice plates[J].Journal of Hydrodynamics,2018,30(3):514-521.
- [9]LI Q,LI W,ZHANG J,et al.The effect of ncg on the characteristics of hydraulic cavitation[J].Mechanics & Industry,2020,21(5):1-10.
- [10]吕福炜,宗丹丹,孙静,等.空化文丘里管稳流特性研究[J].流体机械,2020,48(3):17-22.LYU F W,ZONG D D,SUN J,et al.Numerical study on the steady flow characteristics of cavitation venturi[J].Fluid Machinery,2020,48(3):17-22.
- [11]梁兴,张剑焜,李志红,等.超驼峰工况下轴流泵站事故停泵防护方案寻优[J].排灌机械工程学报,2020,38(10):1010-1015.LIANG X.ZHANG J K,LI Z H,et al.Optimizing protection scheme for accident shutdown of axial flow pumping station under super hump conditions[J].Journal of Drainage and Irrigation Machinery Engin,2020,38(10):1010-1015.
- [12]郭凯,谭蔚,曹丽琴,等.横流冲刷下换热器管束流体弹性失稳的研究进展[J].压力容器,2021,38(7):70-76.GUO K,TAN W,CAO L Q,et al.Research progress on fluid-elastic instability of heat exchanger tube bundles in cross flow[J].Pressure Vessel Technology,2021,38(7):70-76.
- [13]WANG G Y,WU Q,HUANG B.Dynamics of cavitation-structure interaction[J].Acta Mechanica Sinica,2017,33(4):685-708.