旋流器内空气柱形成与发展及其对分离的影响Generation and Development of Air-core in Hydrocyclone and its Effect on Separation Performance
曹晓娟;顾伯勤;
CAO Xiao-juan1,GU Bo-qin2(1.East China Engineering Science and Technology Co.,Ltd.,Hefei 230024,China;2.Nanjing University of Technology,Nanjing 210009,China)
摘要(Abstract):
空气柱是固—液型旋流器流场中的一种特有现象,它对旋流器的分离性能有重要影响。采用流体体积函数模型模拟了空气柱的形成与发展过程,探讨了空气柱形成和发展的机理,分析了空气柱对旋流器溢流比、流场湍流结构、能耗的影响,并采用随机轨道模型分析了空气柱与分级效率的之间的关系。结果表明,空气柱导致旋流器溢流比、湍流强度及能耗增大,分级效率降低。为了降低能耗、提高分离效率应尽可能减小或消除空气柱。
Air-core,as one of characteristics of flow field,has remarkable influence on separation performance of hydrocyclone.The process and mechanism of air-core generation and development were studied using Volume of Fluid Model.The effect of air-core on flow split,turbulent structure of flow field,energy consumption was studied.Furthermore,the effect of air-core on classification efficiency was also investigated by Stochastic Particle Tracking Model.The results indicate that air-core results in the increase of split ratio,turbulent intensity and energy consumption,and the decrease of classification efficiency of hydrocyclone.In order to save energy and improve separation efficiency,air core should be decreased or eliminated as far as possible.
关键词(KeyWords):
旋流器;空气柱;能耗;分离效率
hydrocyclone;air-core;energy consumption;separation efficiency
基金项目(Foundation):
作者(Authors):
曹晓娟;顾伯勤;
CAO Xiao-juan1,GU Bo-qin2(1.East China Engineering Science and Technology Co.,Ltd.,Hefei 230024,China;2.Nanjing University of Technology,Nanjing 210009,China)
参考文献(References):
- [1]Liangyin Chu,Jianjun Qin,Wenmei Chen,et al.En-ergy Consumption and Its Reduction in the Hydrocy-clone Separation Process.II.Time-Averaged and Fluctuating Characteristics of the Turbulent Pressure in a Hydrocyclone[J].Sep.Sci.Technol,2000,35(15):2543-2560.
- [2]Ingham D B,Ma L.Predicting the performance of air cyclones[J].Int J Energy Res,2002,26:633-652.
- [3]Narasimha M,Brennan M,Holtham P N.Large-eddy simulation of hydrocyclone-prediction of air-core diam-eter and shape[J].Int J Miner Process,2006,80(1):1-14.
- [4]Liangyin Chu,Wei Yu,Guangjin Wang.Enhance-ment of hydrocyclone separation performance by elimi-nating the air core[J].Chem.Eng.Sci.,2002,57:207-212.
- [5]Svarovaky L.Hydrocyclone[M].London:Holt,Rin-chart and Winston ltd,1984.
- [6]Zhibin Wang.Research on nonlinear stochastic charac-teristics of separation processes[J].Sichuan Universi-ty,2006.
- [7]Gibson MM,Launder B E.Ground effects on pressure fluctuations in the atmospheric boundary layer[J].Fluid Mesh,1978,68:491-511.
- [8]Launder B E.Second-Moment closure:present and fu-ture[J].Int J Heat Fluid Flow,1989,10(4):280-300.
- [9]Launder B E,Reece G J,Rodi W.Progress in the de-velopment of Reynolds stress turbulence closure[J].Fluid Mesh,1975,68(3):537-566.
- [10]Lien F S,Leschziner M A.Assessment of turbulent transport models inchuding non-liner RNG eddy-vis-cosity formulation and second momnet closure[J].Comput.fluids,1994,23(8):983-1004.
- [11]Hirt C W,Nichols B D.Volume of fluid(VOF)method for the dynamics of free boundaries[J].J Comput,phys,1981,39:201-205.
- [12]Narasimha M,Mathew B,Holtham P N.Large eddy simulation of hydrocyclone prediction of air-core di-ameter and shape[J].Int.J.Miner.Process,2006,80(1):1-14.
- [13]Fluent Inc.Fluent User's Guide[Z].Fluent Inc,2003.
- [14]Cullivan J C,Williams R A,Cross C R.Understand-ing the hydrocyclone separator through computational fluid dynamics[J].Chem Eng Res Des,2003,81(A4):455-466.
- [15]Hargreaves J H,Silvester K S.Computational fluid dynamics applied to the analysis of deoiling hydrocy-clone performance[J].Chem Eng Res Des,1990,68:365-382.
- 曹晓娟
- 顾伯勤
CAO Xiao-juan1- GU Bo-qin2(1.East China Engineering Science and Technology Co.
- Ltd.
- Hefei 230024
- China
- 2.Nanjing University of Technology
- Nanjing 210009
- China)
- 曹晓娟
- 顾伯勤
CAO Xiao-juan1- GU Bo-qin2(1.East China Engineering Science and Technology Co.
- Ltd.
- Hefei 230024
- China
- 2.Nanjing University of Technology
- Nanjing 210009
- China)