基于粒子滤波算法的涡旋压缩机性能预测研究Performance prediction analysis of scroll compressor based on particle filter algorithm
李超,刘忠良,金银霞,侯军军,魏宁,尹贺龙
LI Chao,LIU Zhongliang,JIN Yinxia,HOU Junjun,WEI Ning,YIN Helong
摘要(Abstract):
为了准确预测涡旋压缩机热力性能,提出一种基于粒子滤波算法的性能预测方法,首先建立了压缩腔内气体压力、温度以及质量随主轴转角的变化的数学模型,基于数学模型建立其压力与温度变化的状态方程和预测方程;然后搭建标准的粒子滤波算法,将温度初始值18.7 ℃与压力初始值102 kPa代入预测模型,对气体状态参数进行预测。结果表明:粒子滤波算法对压缩腔内气体的温度和压力变化预测结果较好,温度预测过程最大偏差为1.2 ℃,压力预测过程最大偏差为2.4 kPa,真实值与预测值间的相对误差在10%左右,预测精度较高,并且随着粒子数增加,算法稳定性提升,预测精度提高。
In order to accurately predict the thermal performance of scroll compressor,a performance prediction method based on particle filter algorithm was proposed.First,the mathematical model of the gas pressure,temperature and mass in the compression chamber with the rotation angle of the main shaft was established,and the state equation and prediction equation of the pressure and temperature change were established based on the mathematical model.Then the standard particle filter algorithm was built,and the initial temperature 18.7 ℃ and pressure 102 kPa were substituted into the prediction model to predict the gas state parameters.The results show that the particle filter algorithm has better prediction results for the temperature and pressure change of gas in the compression chamber,the max.deviation of temperature prediction process is 1.2 ℃,the max.deviation of pressure prediction process is 2.4 kPa,the relative error between the true value and the predicted value is around 10%,so the prediction accuracy is higher,and with the increase of particle population,the algorithm is improved stably,and the prediction accuracy is improved.
关键词(KeyWords):
涡旋压缩机;热力性能;粒子滤波;温度;压力
scroll compressor;thermal performance;particle filter;temperature;pressure
基金项目(Foundation): 国家自然科学基金项目(51265026)
作者(Author):
李超,刘忠良,金银霞,侯军军,魏宁,尹贺龙
LI Chao,LIU Zhongliang,JIN Yinxia,HOU Junjun,WEI Ning,YIN Helong
参考文献(References):
- [1]郝胜利,马国远,许树学,等.电动车空调用变壁厚涡旋压缩机的性能研究[J].流体机械,2020,48(4):24-28.HAO S L,MA G Y,XU S X,et al.Research on performance of variable wall thickness scroll compressors for electric vehicle air conditioning[J].Fluid Machinery,2020,48(4):24-28.
- [2]李超,刘竞中,王海宏,等.多载荷耦合作用下涡旋压缩机动涡旋盘的应力应变分析[J].流体机械,2020,48(10):30-35.LI C,LIU J Z,WANG H H,et al.Stress and strain analysis of orbiting scroll of scroll compressor under coupled action of multiple loads[J].Fluid Machinery,2020,48(10):30-35.
- [3]CHEN Y,HALM N P,GROLL E A,et al.Mathematical modeling of scroll compressors-part I:compression process modeling[J].International Journal of Refrigeration,2002,25(6):731-750.
- [4]DINIZ M C,PEREIRA E L L,DESCHAMPS C J.A lumped-parameter thermal model for scroll compressors including the solution for the temperature distribution along the scroll wraps[J].International Journal of Refrigeration,2015,53:184-194.
- [5]彭斌,孙迎.变截面涡旋压缩机数学模型及试验研究[J].机械工程学报,2015,51(14):185-191.PENG B,SUN Y.Mathematical model and experimental study of variable cross-section scroll compressor[J].Chinese Journal of Mechanical Engineering,2015,51(14):185-191.
- [6]李超,李国永,赵嫚,等.变容量涡旋压缩机性能预测数学模型[J].化工机械,2016,43(3):379-383.LI C,LI G Y,ZHAO M,et al.Mathematical model for performance prediction of variable volume scroll compressor[J].Chemical Machinery,2016,43(3):379-383.
- [7]彭斌,赵生显,李要红.无油涡旋压缩机的泄漏特性研究[J].流体机械,2018,46(10):35-40.PENG B,ZHAO S X,LI Y H.Leakage characteristics of oil-free scroll compressor[J].Fluid Machinery,2018,46(10):35-40.
- [8]李超,张晓东,王海宏,等.涡旋压缩机多变压缩过程指数变化规律研究[J].流体机械,2020,48(8):11-17.LI C,ZHANG X D,WANG H H,et al.Study on exponential variation of scroll compressor during variable compression process[J].Fluid Machinery,2020,48(8):11-17.
- [9]王法胜,鲁明羽,赵清杰,等.粒子滤波算法[J].计算机学报,2014,37(8):1679-1694.WANG F S,LU M Y,ZHAO Q J,et al.Particle filtering algorithm[J].Chinese Journal of Computers,2014,37(8):1679-1694.
- [10]CARPENTER J,CLIFFORDY P,FEARNHEAD P.An improved particle filter for non-linear problems[J].IEE Proceedings F,1999,146(1):2-7.
- [11]焦自权,范兴明,张鑫,等.基于改进粒子滤波算法的锂离子电池状态跟踪与剩余使用寿命预测方法[J].电工技术学报,2020,35(18):3979-3993.JIAO Z Q,FAN X M,ZHANG X,et al.State tracking and remaining service life prediction method of lithium ion battery based on improved particle filter algorithm[J].Transactions of China Electrotechnical Society,2020,35(18):3999-3993.
- [12]曹洁,李钊,王进花,等.基于粒子群优化粒子滤波和CUDA加速的故障诊断方法[J].计算机应用与软件,2020,37(4):240-246.CAO J,LI Z,WANG J H,et al.Fault diagnosis method based on PARTICLE swarm optimization particle filter and CUDA acceleration[J].Computer Applications and Software,2020,37(4):240-246.
- [13]李位星,马维亮,田卉,等.基于CNN的粒子滤波目标跟踪算法研究[J].北京理工大学学报,2018,38(12):1256-1262.LI W X,MA W L,TIAN H,et al.Particle filter for object tracking based on CNN feature[J].Journal of Beijing Institute of Technology,2018,38(12):1256-1262.
- [14]朱震曙,蒋长辉,薄煜明,等.磷虾群优化的改进粒子滤波算法[J].哈尔滨工业大学学报,2020,52(2):186-192.ZHU Z S,JIANG C H,BO Y M,et al.Improved particle filter algorithm optimized by krill herd[J].Journal of Harbin Institute of Technology,2020,52(2):186-192.
- [15]王纯,韩加好,吉庆.基于改进粒子群算法的齿轮传动优化设计研究[J].机电工程,2021,38(2):239-244.WANG C,HAN J H,JI Q.Optimization design of gear transmission based on improved particle swarm optimization algorithm[J].Journal of Mechanical&Electrical Engineering,2021,38(2):239-244.
- [16]杨金鑫,范英,谢纯禄.基于行距离及粒子滤波的车道线识别算法[J].江苏大学学报(自然科学版),2020,41(2):138-142.YANG J X,FAN Y,XIE C L.Lane detection algorithm based on row distance and particle filter[J].Journal of Jiangsu University(Natural Science Eidtion),2020,41(2):138-142.
- [17]李学军.仓储物流机器人粒子群路径拣选算法[J].包装与食品机械,2020,38(6):46-50.LI X J.Warehousing logistics robot particle swarm path picking algorithm[J].Packaging and Food Machinery,2020,38(6):46-50.
- [18]余萍.基于智能技术的一类非线性系统故障诊断与预测方法研究[D].兰州:兰州理工大学,2020.YU P.Research on fault diagnosis and prediction method of a class of nonlinear systems based on intelligent technology[D].Lanzhou:Lanzhou University of Technology,2020.