不同冷表面二次结霜/融霜微观可视化试验研究Experimental Study of Microscopic Visualization of Secondary Frosting/Defrosting on Different Cold Surfaces
鲁祥友,潘雨阳,景艳阳,谢远来,张进新
Lu Xiangyou,Pan Yuyang,Jing Yanyang,Xie Yuanlai,Zhang Jinxin
摘要(Abstract):
对裸铝表面、粗糙表面和腐蚀表面结霜/融霜过程进行了试验研究,对不同时期霜晶生长过程进行了观测。结果表明:在一次结霜过程中,裸铝表面的霜晶生长高度明显高于腐蚀表面和粗糙表面。在二次结霜过程中,裸铝表面由于融霜液滴的局部聚集,导致霜晶高度明显增加;腐蚀表面由于具有亲水性质表现出较好的抑霜性能;粗糙表面上霜晶颗粒细小,沿平面方向分布均匀,在表面形成了一次质密且较为坚硬的"冰面"。2次融霜过程中,腐蚀表面的平均融霜时间比粗糙表面减少了38.2%,可见具有亲水性质的腐蚀表面具有较好的抑霜性能。
The frosting/defrosting process of bare aluminum surface,rough surface and corroded surface was studied.The results show that the frost crystal growth height on bare aluminum surface was obviously higher than that on corroded surface and rough surface.In the process of secondary frost formation,the frost crystal height increased significantly due to the local aggregation of defrosting droplets on the surface of bare aluminum.Due to the influence of corrosion pits,the distribution of frost crystals was random.The frost crystal particles on the rough surface were small and evenly distributed along the plane direction,forming a dense and relatively hard"ice"on the surface.In the two defrosting processes,the average defrosting time of bare aluminum surface and corroded surface was decreased by 38.0% and 38.2% respectively compared to rough surface,indicating that corroded surface with hydrophilic nature had better anti-frosting effect.
关键词(KeyWords):
可视化;凝结;传热;腐蚀;亲水性;霜晶
visualization;condensation;heat transfer;corrosion;hydrophilic;frost crystal
基金项目(Foundation): 国家自然科学基金项目(51606002);; 安徽省高校省级自然科学研究项目(KJ2019A0755);; 安徽建筑大学自然科学研究项目(JY16-3-184)
作者(Author):
鲁祥友,潘雨阳,景艳阳,谢远来,张进新
Lu Xiangyou,Pan Yuyang,Jing Yanyang,Xie Yuanlai,Zhang Jinxin
参考文献(References):
- [1] 盛伟,兰庆云,刘鹏鹏,等.铝表面结霜的试验研究及CFD模拟[J].流体机械,2019,47(4):83-88.
- [2] 张友法,吴洁,余新泉,等.可控阵列微纳结构超疏水铜表面冰霜传质特性[J].物理化学学报,2014,30(10):1970-1978.
- [3] Kim K,Kim M H,Kim D R,et al.Thermal performance of micro-channel heat exchangers according to the design parameters under the frosting conditions[J].Int.J.Heat Mass Transfer,2014,71:626-632.
- [4] 刘耀民,刘中良,黄玲艳,等.基于分形论的霜晶生长模型及计算机模拟[J].中国科学E辑:技术科学,2009,39(11):1864-1869.
- [5] Menini R,Ghalmi Z,Farzaneh M.Highly resistant icephobic coatings on aluminum alloys[J].Cold Regions Science&Technology,2011,65(1):65-69.
- [6] 勾昱君,刘中良,黄玲艳,等.自然对流条件下新型亲水涂料的抑霜试验研究[J].流体机械,2007,35(12):45-52.
- [7] 张毅,张冠敏,张莉莉,等.空气源热泵结霜机理及除霜/抑霜技术研究进展[J].制冷学报,2018,39(5):10-21.
- [8] 李栋,陈振乾,王鑫,等.冷表面霜晶演化的微观可视化观测[J].东南大学学报(自然科学版),2017,47(1):79-84.
- [9] 吴晓敏,褚福强,陈永根.疏水表面的融霜排液特性研究[J].工程热物理学报,2015,36(6):1345-1348.
- [10] 周荃卉,余新泉,张友法,等.喷砂-阳极氧化-氟化处理构筑铝合金超疏水表面[J].高等学校化学学报,2010,31(3):456-462.
- [11] Tourkine P,Merrer M L,Quere D.Delayed freezing on water repellent materials[J].Langmuir,2009,25(13):7214-7216.
- [12] Cao L,Jones A K,Sikka V K,et al.Anti-icing super-hydrophobic coating[J].Langmuir,2009,25(21):12444-12448.
- [13] 汪峰,梁彩华,张友法,等.结霜初期超疏水表面凝结液滴的自跳跃脱落及其对结霜过程的影响[J].东南大学学报(自然科学版),2016,46(4):757-762.
- [14] 李丽艳,刘中良,赵玲倩,等.结霜初期无液核形成时的抑霜研究[J].工程热物理学报,2019,40(1):198-203.
- [15] 吴晓敏,王维城.冷面结霜初始形态的理论分析[J].工程热物理学报,2003,24(2):286-288.
- [16] 吴晓敏,褚福强,陈永根.疏水表面结霜初期液滴生长的理论分析[J].化工学报,2015,66(S1):60-64.
- [17] Sheng Wei,Liu Pengpeng,Dang Chaobin,et al.Review of restraint frost method on cold surface[J].Renewable and Sustainable Energy Reviews,2017,79:806-813.
- [18] 马强,吴晓敏.表面特性对结霜和融霜排液的影响[J].化工学报,2017,68(S1):90-95.