融霜工况下压缩机运行频率对空气源热泵机组制热性能的影响Influence of compressor operating frequency on heating performance of air source heat pump unit under defrosting condition
翁文兵,李晓,李霞
WENG Wenbing,LI Xiao,LI Xia
摘要(Abstract):
为研究融霜工况下压缩机运行频率对热泵机组制热性能的影响,通过试验对融霜工况下空气源热泵机组在不同频率下的特性进行了研究。结果表明,热泵机组以80 Hz以下频率制热运行时,机组在一个制热-融霜周期内的产热、融霜耗热、结霜质量基本不变。热泵机组周期平均制热量随压缩机运行频率并非单调上升,而在80 Hz时出现了最大值,运行频率超过80 Hz后,周期平均制热量反而有所降低。当压缩机运行频率超过73 Hz后,机组周期平均功率增加量已超过了平均制热量的增加量,即提高频率后的整机效率,不如固定频率73 Hz加辅助电热的整机效率。
The characteristics of air source heat pump unit at different frequencies under defrosting condition were studied through tests to study the influence of compressor frequency on the heating performance of the heat pump unit.The results show that when the heat pump unit operates in heating mode at frequencies below 80 Hz,the heating capacity,defrosting heat consumption and water mass of frosting in one heating-defrosting cycle are basically kept unchanged.The average output of heat pump unit does not increase monotonically with compressor operating frequency,however,it reaches maximum at 80 Hz,after the operating frequency exceeds 80 Hz,the periodical average heating output decreases somewhat with continuous increasing frequency.When the operating frequency exceeded 73 Hz,the increase of heating output of the unit has exceeded the increase of average heating output,that is,the efficiency of the whole machine after frequency is increased is less than that of the whole machine with fixed frequency of 73 Hz plus auxiliary electric heating.
关键词(KeyWords):
融霜工况;压缩机运行频率;空气源热泵;制热性能
defrosting condition;compressor operating frequency;air source heat pump;heating performance
基金项目(Foundation): 上海市青年科技英才扬帆计划项目(20YF1432000)
作者(Author):
翁文兵,李晓,李霞
WENG Wenbing,LI Xiao,LI Xia
参考文献(References):
- [1]王伟,刘景东,孙育英,等.空气源热泵在北京地区全工况运行的关键问题及应对策略[J].暖通空调,2017,47(1):20-27.WANG W,LIU J D,SUN Y Y,et al.The key issues and countermeasures of air source heat pump operation in Beijing area under full working conditions[J].HVAC,2017,47(1):20-27.
- [2]乐慧,李好玥,江亿.用空气源热泵实现农村采暖的“煤改电”同时为电力削峰填谷[J].中国能源,2016,38(11):9-15.LE H,LI H Y,JIANG Y.Using air-source heat pumps to realize rural heating“coal to electricity”and at the same time to cut peaks and fill valleys for electricity[J].China Energy,2016,38(11):9-15.
- [3]曲明璐,张童瑶,张娆,等.复叠式空气源热泵相变蓄热器蓄放热效率试验研究[J].流体机械,2019,47(11):66-71.QU M L,ZHANG T Y,ZHANG R,et al.Experimental study on charge and discharge thermal efficiency of cascade air source heat pump phase change regenerator[J].Fluid Machinery,2019,47(11):66-71.
- [4]刘泽勤,张艺,李向阳.家用空气源CO2热泵热水器系统特性的试验研究[J].流体机械,2019,47(2):70-74.LIU Z Q,ZHANG Y,LI X Y.Experimental study on characteristics of household CO2 air-source heat pump water heater[J].Fluid Machinery,2019,47(2):70-74.
- [5]姚杨,姜益强,马最良.空气源热泵冷热水热泵机组空气侧换热器结霜规律[J].哈尔滨工业大学学报,2002,34(5):660-662.YAO Y,JIANG Y Q,MA Z L.The frosting law of the air side heat exchanger of the air source heat pump cold and hot water heat pump unit[J].Journal of Harbin Institute of Technology,2002,34(5):660-662.
- [6]陈轶光,郭宪民,王成生.结霜工况下热泵空调器性能的理论与实验研究[J].流体机械,2006,34(3):52-57.CHEN Y G,GUO X M,WANG C S.Theoretical and experimental research on the performance of heat pump air conditioners under frosting conditions[J].Fluid Machinery,2006,34(3):52-57.
- [7]LIU J D,SUN Y Y,WANG W,et al.Performance evaluation of air source heat pump under unnecessary defrosting phenomena for nine typical cities in China[J].International Journal of Refrigeration,2017,74:385-398.
- [8]WANG W,GUO Q C,FENG Y C,et al.Theoretical study on the critical heat and mass transfer characteristics of a frosting tube[J].Applied Thermal Engineering,2013,54(1):153-160.
- [9]曹小林,曹双俊,段飞,等.空气源热泵除霜问题研究现状与展望[J].流体机械,2011,39(4):75-79.CAO X L,CAO S J,DUAN F,et al.Research status and prospects of air source heat pump defrosting[J].Fluid Machinery,2011,39(4):75-79.
- [10]QU M L,XIA L,DENG S M,et al.An experimental investigation on reverse-cycle defrosting performance for an air source heat pump using an electronic expansion valve[J].Applied Energy,2012,97:327-333.
- [11]QU M L,XIA L,DENG S M,et al.Improved indoor thermal comfort during defrost with a novel reversecycle defrosting method for air source heat pumps[J].Building and Environment,2010,45(11):2354-2361.
- [12]赵敬德,叶涛,周亚素,等.翅片换热器表面霜层质量生长特性及平均堵塞率的试验研究[J].流体机械,2020,48(4):12-17.ZHAO J D,YE T,ZHOU Y S,et al.Experimental study on frost mass growth characteristics and average clogging rate of finned heat exchanger[J].Fluid Machinery,2020,48(4):12-17.
- [13]鲁祥友,潘雨阳,景艳阳,等.不同冷表面二次结霜/融霜微观可视化试验研究[J].流体机械,2020,48(3):73-78.LU X Y,PAN Y Y,JING Y Y,et al.Experimental study of microscopic visualization of secondary frosting/defrosting on different cold surfaces[J].Fluid Machinery,2020,48(3):73-78.
- [14]翁文兵,刁海健,范志伟.串列式双蒸发温度新风机组的性能研究[J].流体机械,2020,48(6):84-88.WENG W B,DIAO H J,FAN Z W.Study on performance of tandem double evaporation temperature fresh air unit[J].Fluid Machinery,2020,48(6):84-88.
- [15]杨飞,徐晶珺.超大型水轮发电机定子振动超标处理技术探讨[J].排灌机械工程学报,2020,38(12):1233-1238.YANG F,XU J J.Discussion on over-standard treatment technology of stator vibration of super large hydrogenerator[J].Journal of Drainage and Irrigation Machinery Engineering(JDIME),2020,38(12):1233-1238.
- [16]吴玉珍,冉治通.微型半开式叶轮高速离心泵结构对效率影响的试验研究[J].化工设备与管道.2018,55(3):42-45.WU Y Z,RAN Z T.Experiment and study of effects of structures in miniature high-speed centrifugal pump with semi-open lmpeller to its efficiency[J].Process Equipment&Piping,2018,55(3):42-45.
- [17]赵力,张启.关于压缩机频率和热泵主要参数之间的关联[J].太阳能学报,2003,24(3):311-315.ZHAO L,ZHANG Q.On the correlation between compressor frequency and main parameters of heat pump[J].Journal of Solar Energy,2003,24(3):311-315.
- [18]梁士民,张仕强.变频空气源热泵结霜工况动态运行特性的现场实测研究[J].建筑科学,2019,32(12):12-32.LIANG S M,ZHANG S Q.Field measurement research on dynamic operating characteristics of variable frequency air source heat pump underfrosting conditions[J].Building Science,2019,32(12):12-32.
- 融霜工况
- 压缩机运行频率
- 空气源热泵
- 制热性能
defrosting condition - compressor operating frequency
- air source heat pump
- heating performance