热电过冷器-膨胀机耦合CO2跨临界制冷循环?分析Exergy Analysis of CO2 Transcritical Refrigeration Cycle Combined with Thermoelectric Subcooler and Expander
代宝民,刘圣春,潘红蕊,孙志利,杨茜茹,马一太
Dai Baomin,Liu Shengchun,Pan Hongrui,Sun Zhili,Yang Qianru,Ma Yitai
摘要(Abstract):
提出了热电过冷器-膨胀机耦合CO_2跨临界制冷循环(TES+EXP),可实现热电过冷器、膨胀机和压缩机之间的电能平衡分配。对新构型各部件及循环整体的不可逆损失及?效率进行了详细分析,并与三种构型CO_2跨临界循环进行了对比。结果表明TES+EXP循环的?效率明显高于热电过冷(TES)循环,在过冷度为10℃时,?效率提高7.4%。排气压力和过冷度是影响TES+EXP循环单位制冷量不可逆损失iTot的关键因素,循环在最优排气压力和过冷度时存在最小iTot,在标准工况下,TES+EXP循环相对传统CO_2跨临界制冷循环,最小iTot降低了39.9%;气冷器出口温度为46℃时,最优高压减小了2.0 MPa。推荐新型循环应用于气候炎热地区。
A novel CO_2 transcritical refrigeration cycle(TES+EXP) was proposed,which can achieve electric energy balance distribution between the thermoelectric subcooler,the expander and the compressor. The irreversible loss and exergy efficiency of each component and the overall TES+EXP cycle of the new configuration were analyzed in detail and compared with other three configurations of CO_2 transcritical cycles. The results show that the exergy efficiency of TES+EXP cycle was substantially higher than that of the thermoelectric subcooling cycle(TES),which was improved by 7.4% at subcooling degree of 10 ℃.The exhaust pressure and subcooling degree are two key parameters affecting the irreversible loss per unit cooling capacity(iTot) of TES+EXP cycle.There exists a minimum iTot at the optimum exhaust pressure and subcooling degree. The minimum iTot was reduced by39.9% for TES+EXP cycle compared with traditional CO_2 cycle.Moreover,the optimum exhaust pressure was reduced by 2.0 MPa at 46 ℃ outlet temperature of the gas cooler. It is recommended that the new cycle is applied in the hot regions.
关键词(KeyWords):
跨临界CO_2;制冷循环;热电过冷;膨胀机;?分析
transcritical CO_2;refrigerating cycle;thermoelectric subcooling;expander;exergy analysis
基金项目(Foundation): 天津市高等学校自然科学研究项目(160018)
作者(Author):
代宝民,刘圣春,潘红蕊,孙志利,杨茜茹,马一太
Dai Baomin,Liu Shengchun,Pan Hongrui,Sun Zhili,Yang Qianru,Ma Yitai
参考文献(References):
- [1]Zhang Z,Ma Y,Li M,et al.Recent advances of energy recovery expanders in the transcritical CO2refrigeration cycle[J].HVAC&R Research,2013,19(4):376-384.
- [2]Zhu Y,Jiang P.Theoretical model of transcritical CO2ejector with non-equilibrium phase change correlation[J].International Journal of Refrigeration,2018,86:218-227.
- [3]Dai B,Liu S,Zhu K,et al.Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander[J].Energy,2017,122:787-800.
- [4]代宝民,刘圣春,孙志利,等.机械过冷CO2跨临界制冷循环性能理论分析[J].制冷学报,2018,39(1):13-19.
- [5]Agrawal N,Bhattacharyya S.Studies on a two-stage transcritical carbon dioxide heat pump cycle with flash intercooling[J].Applied Thermal Engineering,2007,27(2):299-305.
- [6]Torrella E,Sánchez,Llopis R,et al.Energetic evaluation of an internal heat exchanger in a CO2transcritical refrigeration plant using experimental data[J].International Journal of Refrigeration,2011,34(1):40-49.
- [7]Ma Y,Liu Z,Tian H.A review of transcritical carbon dioxide heat pump and refrigeration cycles[J].Energy,2013,55:156-172.
- [8]Sarkar J. Performance optimization of transcritical CO2refrigeration cycle with thermoelectric subcooler[J].International Journal of Energy Research,2011,37(2):121-128.
- [9]Yang J,Ma Y,Li M,et al.Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander[J].Energy,2005,30(7):1162-1175.
- [10]Riffat S B,Ma X,Wilson R.Performance simulation and experimental testing of a novel thermoelectric heat pump system[J].Applied Thermal Engineering,2006,26(5):494-501.
- [11]Riffat S B,Ma X.Improving the coefficient of performance of thermoelectric cooling systems:a review[J].International Journal of Energy Research,2004,28(9):753-768.
- [12]Robinson D M,Groll E A. Efficiencies of transcritical CO2 cycles with and without an expansion turbine[J].International Journal of Refrigeration,1998,21(7):577-589.
- [13]Wang H,Peterson R,Herron T.Design study of configurations on system COP for a combined ORC(organic Rankine cycle)and VCC(vapor compression cycle)[J].Energy,2011,36(8):4809-4820.
- [14]Lemmon E W,Huber M L,McLinden M O.Fluid Thermodynamic and Transport Properties Database(REFPROP[)S].NIST Standard Reference Database23,Version 9.1,Gaithersburg,MD:National Institute of Standards and Technology(NIST),2013.
- [15]Dai B,Dang C,Li M Li,et al.Thermodynamic performance assessment of carbon dioxide blends with low-global warming potential(GWP)working fluids for a heat pump water heater[J].International Journal of Refrigeration,2015,56:1-14.
- [16]张季,赵国忠,张皓,等.基于精细螺栓模型的爆破阀热固耦合密封性能分析[J].压力容器,2018,35(2):16-26.
- [17]徐君臣,吴云龙,张文杰.高温管线限位支撑结构的热力耦合分析及结构改进[J].压力容器,2017,34(12):35-41.
- [18]卢召红,高姗姗,刘迎春,等.水中管道悬跨节段涡激力下的动力响应分析[J].压力容器,2017,34(11):38-44.
- [19]张超,陈团海,彭延建.大型LNG全容罐泄放阀火灾安全性分析[J].压力容器,2016,33(12):45-52.
- [20]葛振涛,纪晶,兰玉彬,等.尾鳍对无阀压电泵性能的影响分析与试验研究[J].排灌机械工程学报,2017,35(1):92-97.
- [21]徐恒杰,宋鹏云.三自由度微扰下的静压干气密封动态特性分析[J].排灌机械工程学报,2017,35(1):56-64.
- [22]Dai B,Liu S,Li H,et al. Energetic performance of transcritical CO2 refrigeration cycles with mechanical subcooling using zeotropic mixture as refrigerant[J].Energy,2018,150:205-221.
- 跨临界CO_2
- 制冷循环
- 热电过冷
- 膨胀机
- ?分析
transcritical CO_2 - refrigerating cycle
- thermoelectric subcooling
- expander
- exergy analysis