斯特林制冷循环膨胀腔制冷能力研究Study on the cooling capacity of expansion chamber in Stirling refrigeration cycle
吴腾马,周巧根,汤启升,樊凯
WU Tengma,ZHOU Qiaogen,TANG Qisheng,FAN Kai
摘要(Abstract):
针对斯特林制冷循环内膨胀腔与压缩腔温度差异较大导致采用闭口系统分析与实际情况偏差较大的问题,本文将产生实际制冷能力的膨胀腔视为开口系统,并对其进行制冷能力分析。结果表明,工质的制冷能力可用气缸内工质体积对压力的积分表示,膨胀腔的实际制冷能力可用工质的制冷能力减去工质进出膨胀腔的焓差表示;影响工质体积对压力积分的主要因素为活塞面积比n、膨胀腔相位领先角φ与膨胀腔温度T_e;当压缩腔温度Φ为320 K、膨胀腔温度为80 K时,活塞面积比在4左右时会获得最优的制冷效率。所得结果可为斯特林制冷循环的设计与优化提供依据。
Considering the large deviation between the analysis when using closed system and the actual situation due to large temperature difference between the expansion chamber and compression chamber of Stirling cycle,the expansion chamber producing actual cooling capacity was considered as the opening system and its cooling capacity was analyzed separately.The results show that the cooling capacity of the working medium can be expressed by integration of volume with pressure.The actual cooling capacity of the expansion chamber can be expressed by cooling capacity of the working medium minus the difference of enthalpy entering and leaving the expansion chamber.Main factors affecting integration of volume of the working medium with pressure are piston area ration,phase lead angle of expansion chamber φ,and expansion chamber temperature T_e.The system can achieve best refrigeration efficiency when the compression chamber temperature is 320 K,expansion chamber temperature is 80 K,and the piston area ratio is about 4.The results can provide a basis for the design and optimization of Stirling refrigeration cycle.
关键词(KeyWords):
斯特林制冷循环;膨胀腔;开口系统;制冷能力
Stirling refrigeration cycle;expansion chamber;opening system;cooling capacity
基金项目(Foundation): 上海市科技重大专项(2017SHZDZX02);; 上海应用物理研究所科研项目(1105000503)
作者(Author):
吴腾马,周巧根,汤启升,樊凯
WU Tengma,ZHOU Qiaogen,TANG Qisheng,FAN Kai
参考文献(References):
- [1]童钧耕.工程热力学[M].北京:高等教育出版社,2007.TONG J G.Engineering thermodynamics[M].Beijing:Higher Education Press,2007.
- [2]钱国柱.热气机原理与设计[M].北京:国防工业出版社,1987.QIAN G Z.Principle and design of heat engine[M].Beijing:National Defense Industry Press,1987.
- [3]陈长琦,吴卓林.分置式斯特林制冷机的物理模型及动态特性分析[J].流体机械,2003,31(12):47-50.CHEN C Q,WU Z L.Physical model and dynamic characteristic analysis of split Stirling refrigerator[J].Fluid Machinery,2003,31(12):47-50.
- [4]陈曦,凌飞.基于斯特林制冷机的小型天然气液化流程分析[J].流体机械,2019,47(4):64-68.CHEN X,LINGg F.Analysis of small scale natural gas liquefaction process based on stirling cooler[J].Fluid Machinery,2019,47(4):64-68.
- [5]陈曦,张利锦,朋文涛,等.气动分置式斯特林制冷机冷热端狭缝换热器的优化设计[J].流体机械,2019,47(5):70-73.CHEN X,ZHANG L J,PENG W T,et al.Optimization design of cold and hot end slit heat exchanger of pneumatically driven split stirling refrigerator[J].Fluid Machinery,2019,47(5):70-73.
- [6]丁充,刘道平,叶鹏,等.基于一种改进型的单压吸收式Einstein循环制冷机的设计研究[J].流体机械,2014,42(8):60-63.DING C,LIU D P,YE P,et al.Design research based on a modified single-pressure absorption einstein refrigeration cycle[J].Fluid Machinery,2014,42(8):60-63.
- [7]陈国邦,汤珂.小型低温制冷机原理[M].北京:科学出版社,2010.CHEN G B,TANG K.Principle of small cryocooler[M].Beijing:Science Press,2010.
- [8]WALLACE F.Stirling-cycle machines by G.Walker.Pp ix+156[J].Endeavour,1974,133(120):158-159.
- [9]黄怡青,倪明江,甘智华,等.基于三阶分析模型的斯特林发动机系统模拟和优化[J].太阳能学报,2020,41(6):316-322.HUANG Y Q,NI M J,GAN Z H,et al.Simulation and optimization of Stirling engine system based on third order analysis model[J].Acta Solar Energy Sinica,2020,41(6):316-322.
- [10]TOGHYANI S,KASAEIAN A,AHMADI M H.Multi-objective optimization of Stirling engine using non-ideal adiabatic method[J].Energy Conversion and Management,2014.
- [11]PARLAK N,WAGNER A,ELSNER M,et al.Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions[J].Renewable Energy,2009,34(1):266-273.
- [12]宋金良,吴亦农.微型斯特林制冷机用线性压缩机研究[J].流体机械,2006,34(3):4-6.SONG J L,WU Y N.Study on linear compressor for micro Stirling refrigerator[J]Fluid Machinery,2006,34(3):4-6.
- [13]DAI D D,YUAN F,LONG R,et al.Imperfect regeneration analysis of Stirling engine caused by temperature differences in regenerator[J].Energy Conversion and Management,2018,158:60-69.
- [14]ERCAN A.Numerical analysis of regenerators of free-piston type Stirling engines using Lagrangian formulation[J].International Journal of Refrigeration,2002,25(5):640-652.
- [15]陈曦,张利锦,朋文涛,等.气动分置式斯特林制冷机冷热端狭缝换热器的优化设计[J].流体机械,2019,47(5):70-73.CHEN X,ZHANG L J,PENG W T,et al.Ptimization design of cold and hot end slit heat exchanger of pneumatically driven split stirling refrigerator[J].Fluid Machinery,2019,47(5):70-73.