跨临界CO_2喷射器系统优化调节技术综述A review on optimal regulation technology for transcritical CO_2 ejector system
宗硕,宋昱龙,曹锋
ZONG Shuo,SONG Yulong,CAO Feng
摘要(Abstract):
随着欧盟F-Gas 517/2014法规的通过,CO_2(R744,CO_2)作为制冷剂已经成为目前的研究热点。为应对跨临界CO_2制冷、热泵系统中膨胀功损失问题,使用喷射器代替节流阀作为主要膨胀元件是常用方法之一。针对跨临界CO_2喷射器系统中喷射器调节问题,介绍了喷射器系统的运行特性,并回顾了系统中喷射器调节问题国内外的研究现状,总结了一些主流的调节方法和技术,包括改变喷嘴几何结构、采用可调喉部面积喷射器、采用多喷射器组合的方法等内容,并且对比分析了不同方法的优缺点。可调喉部面积法是调节给定工况下最优高压侧压力的有效方法,但指针的存在降低了喷射器效率。多喷射器组合的方法兼备工况的适应性、喷射器的高效性和控制的简易性。
With the adoption of the EU F-Gas Regulation 517/2014,carbon dioxide(R744,CO_2) as a refrigerant has become a current research hotspot. In order to deal with the problem of loss of expansion work in transcritical carbon dioxide refrigeration and heat pump systems,it is one of the common methods to use an ejector instead of a throttling valve as the main expansion element. For the problem of ejector adjustment in the transcritical CO_2 ejector system,the operating characteristics of the ejector system were introduced,and the research status of the ejector adjustment problem in the system was reviewed,and some mainstream adjustment methods and techniques were summarized,including changing the nozzle geometric structure,adopting adjustable throat area injectors,adopting multi-ejector solution,etc.,and the advantages and disadvantages of different methods were compared and analyzed.The adjustable throat area method is an effective method to adjust the optimal high-pressure side pressure under a given working condition,but the presence of the pointer reduces the ejector efficiency.The multi-ejector combination method has the adaptability of working conditions,the high efficiency of the ejector and the ease of control concurrently.
关键词(KeyWords):
跨临界CO_2喷射器系统;多喷射器组合;可调喉部面积
transcritical CO_2 ejector system;multiple ejector solution;adjustable throat area
基金项目(Foundation): 国家自然科学基金青年项目(52006161)
作者(Author):
宗硕,宋昱龙,曹锋
ZONG Shuo,SONG Yulong,CAO Feng
参考文献(References):
- [1]梁利霞.用于CO2热泵热水器的可调喷射器特性研究[D].杭州:浙江大学,2010.LIANG L X.Research on characteristics of adjustable ejector used in CO2 heat pump water heater[D].Hangzhou:Zhejiang University,2010.
- [2] LORENTZEN G.Trans-critical vapour compression cycle device:WO,WO1990007683 A1[P].
- [3] AUSTIN B T,SUMATHY K.Transcritical carbon dioxide heat pump systems:A review[J].Renewable and Sustainable Energy Reviews,2011,15(8):4013-4029
- [4] LORENTZEN G.The use of natural refrigerants:a complete solution to the CFC/HCFC predicament[J].International Journal of Refrigeration,1995,18(3):190-197.
- [5]张振迎.逆循环中能量回收涡轮膨胀机的理论和试验研究[D].天津:天津大学,2014.ZHANG Z Y.Theoretical and experimental research on energy recovery turbo expander in reverse cycle[D].Tianjin:Tianjin University,2014.
- [6] SARKAR J.Ejector enhanced vapor compression refrigeration and heat pump systems—A review[J].Renewable and Sustainable Energy Reviews,2012,16(9):6647-6659.
- [7] MA Y,LIU Z,TIAN H.A review of transcritical carbon dioxide heat pump and refrigeration cycles[J].Energy,2013,55(15):156-172.
- [8] WANG Y J,TAO L R,LIU Y Y,et al.Theory analysis on the CO2 trans-critical compression refrigeration cycle[J].Physical Experiment of College,2016,29(6):4-8.
- [9]董方日.带喷射器的跨临界CO2热泵的研究[D].大连:大连理工大学,2017.DONG F R.Research on transcritical CO2 heat pump with ejector[D].Dalian:Dalian University of Technology,2017.
- [10] LIU J P,CHEN J P,CHEN Z J.Thermodynamic analysis on CO2 transcritical vapor-compression/ejection refrigeration cycle[J].Journal of Shanghai Jiaotong University,2004,38(2):273-275.
- [11] BESAGNI G,MEREU R,INZOLI F.Ejector refrigeration:A comprehensive review[J].Renewable&Sustainable Energy Reviews,2016,53:373-407.
- [12]魏晋.带喷射器的跨临界CO2热泵系统的变工况研究[D].杭州:浙江大学,2016.WEI J. Research on variable conditions of transcritical CO2 heat pump system with ejector[D].Hangzhou:Zhejiang University,2016.
- [13]林顺荣,陈光明,洪大良,等.带喷射器的溴化锂第二类吸收式热泵循环热力分析[J].低温工程,2012(1):19-24.LIN S R,CHEN G M,HONG D L,et al.Thermal analysis of the second type absorption heat pump cycle of lithium bromide with ejector[J].Cryogenic Engineering,2012(1):19-24.
- [14]张蔚琳.节流压降对带喷射器跨临界CO2热泵性能影响的研究[D].杭州:浙江大学,2018.ZHANG W L.Research on the influence of throttling pressure drop on the performance of transcritical CO2heat pump with ejector[D].Hangzhou:Zhejiang University,2018.
- [15] YANG X,LONG X,YAO X.Numerical investigation on the mixing process in a steam ejector with different nozzle structures[J].International Journal of Thermal Sciences,2012,56:95-106.
- [16] HE Y,DENG J,ZHENG L,et al.Performance optimization of a transcritical CO2 refrigeration system using a controlled ejector[J].International Journal of Refrigeration,2017,75:250-261.
- [17] LIU F,LI Y,GROLL E A.Performance enhancement of CO2 air conditioner with a controllable ejector[J].International Journal of Refrigeration,2012,35(6):1604-1616.
- [18] CHEN J,HAVTUN H,BJ?RN PALM.Investigation of ejectors in refrigeration system:Optimum performance evaluation and ejector area ratios perspectives[J].Applied Thermal Engineering,2014,64(s1-2):182-191.
- [19] LI D,GROLL E A.Transcritical CO2 refrigeration cycle with ejector-expansion device[J].International Journal of Refrigeration,2005,28(5):766-773.
- [20] ELBEL S,HRNJAK P.Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation[J].International Journal of Refrigeration,2008,31(3):411-422.
- [21] Banasiak K,et al.Development and performance mapping of a multi-ejector expansion work recovery pack for R744 vapour compression units[J].International Journal of Refrigeration,2015,57:265-276.
- [22] HAFNER A,RSTERLING S,BANASIAK K.Multiejector concept for R-744 supermarket refrigeration[J].International Journal of Refrigeration,2014,43:1-13.
- [23] SMOLKA J,PALACZ M,BODYS J,et al.Performance comparison of fixed-and controllable-geometry ejectors in a CO2 refrigeration system[J].International Journal of Refrigeration,2016,65:172-182.
- [24] GULLO P,HAFNER A,BANASIAK K,et al.Multiejector concept:A comprehensive review on its latest technological developments[J].Energies,2019,12(3):1-29.
- [25]祝金丹,张少维,桑芝富.采用新型喷嘴结构的蒸汽喷射器性能[J].石油化工设备,2006,35(1):15-18.ZHU J D,ZHANG S X,SANG Z F.The performance of steam ejector with new nozzle structure[J].Petrochemical Equipment,2006,35(1):15-18.
- [26]陆宏圻,陆东宏,陆双钢.组合式可调喷射器:202590663U[P].2018-10-19.LU H X,LU D H,LU S G.Combined adjustable ejector:202590663U[P].2018-10-19.
- [27]代玉强,姚轶智,胡大鹏,等.一种喉部面积可调式静态动量增强型喷射器:201810498952[P].2018-05-23.DAI Y Q,YAO Y Z,HU D P,et al.A static momentum enhanced ejector with adjustable throat area:201810498952[P].2018-05-23.
- [28]杨新宇,王金锋,谢晶.喉部面积比对喷射器性能的影响分析[J].低温与超导,2011,39(6):68-71.YANG X Y,WANG J F,XIE J.Analysis of the effect of throat area ratio on ejector performance[J].Cryogenics and Superconductivity,2011,39(6):68-71.
- [29]刘业凤,余军,吴琪.带喷射器的CO2热泵/制冷系统的研究现状[J].建筑节能,2018,46(9):64-69.LIU Y F,YU J,WU Q.Research status of CO2 heat pump/refrigeration system with ejector[J].Building Energy Efficiency,2018,46(9):64-69.
- 跨临界CO_2喷射器系统
- 多喷射器组合
- 可调喉部面积
transcritical CO_2 ejector system - multiple ejector solution
- adjustable throat area