基于场协同理论的高温热管散热模拟分析Simulation and Analysis on Heat Dissipation of High-temperature Heat Pipe Based on Field Synergy Theory
于萍,耿伟轩,邵园园,郭华锋
Yu Ping,Geng Weixuan,Shao Yuanyuan,Guo Huafeng
摘要(Abstract):
为了提高碟式太阳能热发电系统的高温热管的散热特性,根据场协同理论,利用变分法构造拉格朗日函数,从而求出附加体积力的动量方程,采用数值模拟的方法研究了纵向涡流强度和进口流体雷诺数对水夹套管内对流换热和阻力特征的影响,提出了流场优化强化换热的方法。研究发现基于场协同理论纵向涡流可以明显强化水夹套管内的对流换热,但同时流体流动阻力也随之增大,并且流动阻力的增加幅度要小于对流换热增强的幅度;纵向涡流强度越大,进口流体雷诺数越大,流体具有更为优良的综合强化换热特征。
In order to improve heat dissipation behavior of high-temperature heat pipe applied in dish solar thermal power generation system,the momentum equation with a special additional volume force was calculated by constructing the Lagrange function using the variational method based on the field synergy theory. The effects of longitudinal vortex intensity Reynolds number of the inlet fluid on the characteristics of convective heat transfer and flow resistance in the jacketed pipe were studied by numerical simulation method. The method of heat transfer enhancement by optimization of flow field was proposed. The research results show that the longitudinal vortexes based on field synergy theory can significantly enhance the convective heat transfer in the jacketed pipe,but the flow resistance of the fluid increases simultaneously,and the increase amplitude of the flow resistance is less than the enhancement amplitude of heat transfer. The bigger the longitudinal vortex intensity,the larger Reynolds number of the inlet fluid,and the better integrated enhancement characteristics of heat transfer the fluid has.
关键词(KeyWords):
强化传热;高温热管;纵向涡;场协同理论;数值模拟
heat transfer enhancement;high-temperature heat pipe;longitudinal vortexes;field synergy theory;numerical simulation
基金项目(Foundation): 江苏省高校自然科学研究面上项目(16KJB470016,17KJB460015);; 江苏省大型工程装备检测与控制重点建设实验室开放课题基金项目(JSKLEDC201411);; 徐州市科技计划项目(KH17007);; 徐州工程学院科研项目(XKY2017225)
作者(Author):
于萍,耿伟轩,邵园园,郭华锋
Yu Ping,Geng Weixuan,Shao Yuanyuan,Guo Huafeng
参考文献(References):
- [1]Xu H,Shen Y,Yu P,et al.Study on heat transfer of high temperature heat pipe solar receiver[J].International Journal of Applied Environmental Sciences,2013,8(12):1473-1480.
- [2]Guo Z Y.Mechanism and control of convective heat transfer-coordination of velocity and heat flow fields[J].Chinese Science Bulletin,2001,46(7):596-599.
- [3]Guo Z Y,Li D Y,Wang B X.A novel concept for convective heat transfer enhancement[J].International Journal of Heat And Mass Transfer,1998,41(14):2221-2225.
- [4]孟继安.基于场协同理论的纵向涡强化换热技术及其应用[D].北京:清华大学航天航空学院,2003.
- [5]田文喜,余方伟,秋穗正,等.场协同理论在平行通道内的数值验证[J].核动力工程,2005,26(3):237-241.
- [6]李娟,凌翔,彭浩.基于场协同原理的横排锯齿翅片湍流传热强化机理[J].航空学报,2015,30(10):2376-2383.
- [7]Li J,Ling X,Peng H.Field synergy analysis on convective heat transfer and fluid flow of a novel triangular perforated fin[J].International Journal of Heat and Mass Transfer,2013(64):526-535.
- [8]田丽亭,雷勇刚,何雅玲.纵向涡强化换热特性及机理分析[J].工程热物理学报,2008,29(12):2128-2130.
- [9]孟继安,梁新刚,李志信.多纵向涡对管内湍流换热特性影响的数值分析[J].工程热物理学报,2005,26(3):498-500.
- [10]于萍,张红,许辉,等.高温钠热管再启动特性研究[J].中国电机工程学报,2015,35(2):404-410.
- [11]白穜.高传热性能组合式吸液芯的开发与研究[D].南京:南京工业大学,2011.
- [12]杨东华.不可逆过程热力学原理及工程应用[M].北京:科学出版社,1989.
- [13]曾丹苓.工程非平衡热动力学[M].北京:科学出版社,1991.
- [14]Liu Y,Chen Q,Hu K,et al.Flow field optimization for the solar parabolic trough receivers in direct steam generation systems by the variational principle[J].International Journal of Heat and Mass Transfer,2016(102):1073-1081.
- [15]钱伟长.粘性流体力学的变分原理和广义变分原理[J].应用数学和力学,1984,5(3):305-322.
- [16]李满满.三角形网格的独立性和有效性研究[D].武汉:武汉科技大学理学院,2007.
- 强化传热
- 高温热管
- 纵向涡
- 场协同理论
- 数值模拟
heat transfer enhancement - high-temperature heat pipe
- longitudinal vortexes
- field synergy theory
- numerical simulation