机械密封覆层端面开裂有限元分析Finite Element Analysis of Mechanical Seal Coating Surface Cracking
孙宪栋,姜绪强,李双喜
SUN Xian-dong,JIANG Xu-qiang,LI Shuang-xi
摘要(Abstract):
机械密封覆层端面是获得高性价比密封环的重要方向,然而覆层端面的开裂是其主要的失效形式。采用有限元分析软件,建立了机械密封热-结构耦合模型,综合考虑了端面变形、液膜反压和端面温度共同作用下对密封覆层端面的影响,得到了覆层表面和覆层与基体界面的应力分布,分析了覆层端面开裂的原因。研究结果表明:热载荷对覆层应力分布有显著影响,不容忽略;阻封流体的冷却作用有利于降低热载荷对覆层应力的影响;覆层表面最大拉应力、主界面最大切应力、侧界面最大切应力和最大法向拉应力是引起覆层端面开裂的主要因素。
The mechanical seal coating surface is an important research direction to obtain cost-effective sealing ring. However,the coating surface cracking is its main failure form. The thermal structure coupling model for mechanical seals was built using the finite element analysis software. By taking into account the influence of the deformation of the end face,the reverse pressure of the liquid film and the temperature of the end face on the end face of the sealing coating,the cause of cracking on surface coating was analyzed by the stress distribution of coating surface and the interface between the surface coating and the substrate. The research results show that the thermal load has a significant influence on the stress distribution of the coating,so it should not be neglected. The cooling effect of quench fluid helps to reduce the influence of thermal load on the coating stress. The maximum tensile stress of the coating surface,maximum shear stress of the main interface,maximum shear stress on side interface and the maximum normal tensile stress are the major factors causing coating surface cracking.
关键词(KeyWords):
覆层端面;应力;开裂
coating end face;stress;cracking
基金项目(Foundation): 国家重点基础研究发展计划(2012CB026000)
作者(Author):
孙宪栋,姜绪强,李双喜
SUN Xian-dong,JIANG Xu-qiang,LI Shuang-xi
参考文献(References):
- [1]彭旭东,王玉明,黄兴,等.密封技术的现状与发展趋势[J].液压气动与密封,2009,29(4):4-11.
- [2]曾涛.机械密封的摩擦副材料[J].润滑与密封,1999(6):66-67.
- [3]魏东,刘佐民.金属基/陶瓷涂层的接触应力有限元分析[J].武汉理工大学学报,2001,23(12):1-4.
- [4]Jarligo M O,Mauer G,Mack D,et al.Advanced thermal barriercoatingsfromTi-dopedYSZsystems[C]//InternationalThermalSprayCongerence.Hamburg,2011,DVS276:976-981.
- [5]Komvopoulos K. Finite element analysis of a layered elastic solid in normal contact with a rigid surface[J]. Journal of Tribology,1988,110(3):477-485.
- [6]邹云,蔡池兰,张一兵,等.金属基/陶瓷复合层受弯应力的有限元分析[J].武汉理工大学学报,2004,26(9):30-32.
- [7]李方坡,王引真,王纬,等.复合金属基/陶瓷涂层的应力分析[J].表面技术,2006(5):71-72.
- [8]CarrapichanoJM,OliveiraFJ,RuiFS,etal. Functionalitydiagramsforhybridmechanicalseals with silicon nitride rings[J].Journal of the American Ceramic Society,2005,88(8):2177-2180.
- [9]徐连勇,荆洪阳.金属基陶瓷涂层/钢基体界面裂纹的应力强度因子[J].焊接学报,2008(3):84-88.
- [10]徐连勇.涂层/基体界面的断裂行为研究[D].天津:天津大学,2007.
- [11]顾永泉.机械端面密封[M].北京:石油大学出版社,1999.
- [12]王胜军,郝木明,张书贵.机械密封温度场计算[J].化工机械,2004,31(4):203-207.
- [13]史金鑫.机械密封相变半径和温度的研究[D].北京:北京化工大学,2013.
- [14]单晓亮,胡欲立.基于Ansys的机械密封环温度场分析[J].润滑与密封,2006(9):116-119.
- [15]方艳峰,彭旭东,孟祥铠,等.热冲击对流体静压型机械密封性能影响的研究[J].流体机械,2010,38(10):23-28.
- [16]彭旭东,谢友柏,顾永泉.机械密封端面温度的确定[J].化工机械,1996,23(6):23-26.