触地建筑地面对室内热环境影响实测研究Study of the Measurement Data on Stability of the Indoor Temperature by the Ability of Soil Heat Storage and Release in Touchdown Building
王丽慧,刘俊,刘俊豪,宋洁,郑懿
Wang Lihui,Liu Jun,Liu Junhao,Song Jie,Zheng Yi
摘要(Abstract):
以某实训中心厂房为研究对象,对室外空气温度、室内空气温度、壁面温度、地面温度和地面热流密度进行了为期8个月的实测,主要分析了地面热流密度对室内空气热环境维稳作用。测试结果表明,地面热流密度曲线的变化趋势与室外空气温度变化方向相反以减少室外温度对室内热环境的影响。当室外空气温度骤变时,土体热流密度峰值会增加到日平均值的2.8~6.2倍,使得室内空气温度变化仅为室外空气温度变化的22.1%~54.1%,体现出触地建筑地面土体强大的蓄放热能力。相关研究结果为掌握触地建筑室内热环境变化规律和土体蓄放热潜力的充分利用服务。
With the workshops of a training center as the research object,this paper conducted a period of eight months of actual measurement of outdoor air temperature,indoor air temperature,wall temperature,ground temperature and surface heat flux density,and mainly analyzed the stability maintenance effect of ground heat flux density on indoor air thermal environment.The test results show that the change trend of the ground heat flux density curve is opposite to change direction of the outdoor air temperature so as to reduce the influence of outdoor temperature on the indoor thermal environment.When the outdoor air temperature changes suddenly,the peak heat flux density of the soil mass will increase to 2.8~6.2 times of the daily average value,so that the indoor air temperature change is only 22.1%~54.1% of the outdoor air temperature change,reflecting the strong energy storage and release capacity of ground soil of the touchdown building. The relevant research results serve to master the change laws of the indoor thermal environment of the touchdown building and the full utilization of the potential of soil heat storage and release.
关键词(KeyWords):
半无限大土体;热流密度;室内空气温度;辐射换热;对流换热
semi-infinite soil;heat flux;indoor air temperature;radiation heat transfer;convective heat transfer
基金项目(Foundation): 国家自然科学基金项目(51878408);; 上海市科学促进会联盟计划项目(LM201735);; 上海申通地铁集团有限公司科研计划项目(JS-BZ15R011)
作者(Author):
王丽慧,刘俊,刘俊豪,宋洁,郑懿
Wang Lihui,Liu Jun,Liu Junhao,Song Jie,Zheng Yi
参考文献(References):
- [1]Claesson Johan,Hagentoft Carl-Eric.Heat loss to the ground from a building-I General theory[J].Building and Environment,1991,26(2):195-208.
- [2]Krarti M.A foundation heat transfer algorithm for detailed building energy programs[J].ASHRAETrans,1994,100(2):843-850.
- [3]谢晓娜,刁乃仁.考虑气温年变化的地面传热计算方法[J].暖通空调,2013,43(3):78-82.
- [4]李玲,高琳,杜高潮.底层地面的传热过程及热工设计[J].建筑科学,2007,23(2):44-46.
- [5]龚召熊,罗承管,张锡祥.气温骤降与大体积混凝土表面裂缝[J].人民长江,1990(12):12-17.
- [6]毕家顺.昆明气温骤降与感冒发病率相关性研究[J].气象科技,2006,34(6):728-730.
- [7]易红娟,孙雪梅,张谷丰.短期气温骤降对褐飞虱若虫个体发育的影响[J].中国植保导刊,2008,28(7):15-17.