余热锅炉型喷射式制冷系统的工作特性试验研究Experimental investigation of operating characteristics on the ejector refrigeration system for HRSG
李垒,李庆普
LI Lei,LI Qingpu
摘要(Abstract):
为了提高能源利用率,以喷射式制冷系统为载体对锅炉余热加以利用,并用试验方法对系统性能受运行变量的影响进行研究,从喷射器内流体流动机制上对试验结果进行分析,旨在为实现系统最佳运行环境确定、喷射器结构的最优化设计提供试验依据。试验结果显示:喷射系数和机械COP随发生温度的升高呈现先增加后减小的变化趋势,并与喷嘴喉部内径呈负相关,与蒸发温度、喷射器喉部直径呈正相关;此外,当冷凝温度小于某一值时,喷射系数受冷凝温度的影响很小,而当冷凝温度超过某一值时,喷射系数急剧降低;喷射系数随混合段喉部与喷嘴喉部面积比AR的增加而增大,可从喷射器结构参数对流体流动机制的影响进行解释。
In order to improve the energy efficiency utilization,the ejector refrigeration system was used as the carrier of the ejector refrigeration system,and the experimental method was used to study influence of operation variables on the system performance,and the experimental results were explained based on fluid flow mechanism inside the ejector with a view to providing experimental basis for realizing determination of optimal operating environment of the system and optimal design of the ejector structure.Experimental results show that the ejection factor and mechanical COP firstly increase and then decrease with the increase of generation temperature,and they are negatively correlated with nozzle throat diameter and are positively correlated with evaporation temperature and ejector throat diameter;in addition,the ejection factor is little affected by condensation temperature when the condensation temperature is less than a certain value,while the ejection factor decreases sharply with the increase of condensation temperature when the condensation temperature exceeds a certain value;the ejection factor increases with the increase of the area ratio AR between ejector throat and nozzle throat,which can be explained from influence of ejector structure on the fluidflow mechanism.
关键词(KeyWords):
喷射系数;COP;发生温度;蒸发温度;冷凝温度;喉部内径
ejection factor;COP;generation temperature;evaporation temperature;condensation temperature;throat diameter
基金项目(Foundation): 国家自然科学基金项目(51275152,51875167);; 上海市动力工程多相流动与传热实验室开放基金项目(13DZ2260900);; 河北省自然科学基金项目(2018202114)
作者(Author):
李垒,李庆普
LI Lei,LI Qingpu
参考文献(References):
- [1]杨志平,宋四明,李维,等.耦合喷射器热电联产系统设计及运行优化[J].中国电机工程学报,2020,40(9):2942-2951.YANG Z P,SONG S M,LI W,et al.Design and operation optimization of combined heat and power system coupling with ejector[J].Proceedings of the CSEE,2020,40(9):2942-2951.
- [2]郭向吉,张升升,张博,等.采用涡流管和喷射器的新型LNG汽化加热系统[J].大连理工大学学报,2019,59(2):131-138.GUO X J,ZHANG S S,ZHANG B,et al.Novel heating systems for LNG regasification with vortex tube and ejector[J].Journal of Dalian University of Technology,2019,59(2):131-138.
- [3]何丽娟,吴心伟,朱超群,等.运行参数对喷射器性能影响的实验研究[J].暖通空调,2018,48(12):96-99.HE L J,WU X W,ZHU C Q,et al.Experimental study on effect of operational parameters on ejector performance[J].Heating Ventilation Air Conditioning,2018,48(12):96-99.
- [4]曹丽华,毕书扬.运行参数对喷射器性能影响的数值研究[J].东北电力大学学报,2018,38(4):47-52.CAO L H,BI S Y.Numerical study on the influence of operating parameters on ejector performance[J].Journal of Northeast Electric Power University,2018,38(4):47-52.
- [5]王晓冬,付强,易舒,等.蒸汽喷射制冷系统喷射器工作特性的实验研究[J].东北大学学报(自然科学版),2017,38(12):1744-1747.WANG X D,FU Q,YI S,et al.Experimental investigation of operating characteristics of ejector in steam jet refrigeration system[J].Journal of Northeastern University(Natural Science),2017,38(12):1744-1747.
- [6]何磊,苏毅,揭涛,等.气液喷射器的结构设计与性能分析[J].化工进展,2020,39(4):1245-1251.HE L,SU Y,JIE T,et al.Structural design and performance analysis of gas-liquid ejector[J].Chemical Industry and Engineering Progress,2020,39(4):1245-1251.
- [7]陈伟雄,陈会强,石朝胤,等.喉嘴距对喷射器性能影响的实验研究[J].中国科学院大学学报,2016,33(2):253-257.CHEN W X,CHEN H Q,SHI H Y,et al.Experimental investigation of influences of primary nozzle exit position on ejector performance[J].Journal of University of Chinese Academy of Sciences,2016,33(2):253-257.
- [8]魏晋,唐黎明,亓海明,等.混合室直径对带喷射器的跨临界CO2热泵性能影响[J].化工学报,2016,67(5):1719-1724.WEI J,TANG L M,QI H M,et al.Effect of mixing chamber diameter on performance of transcritical CO2 heat pump system with ejector[J].CIESC Journal,2016,67(5):1719-1724.
- [9]王雨风,王丹东,胡记超,等.两相流CO2喷射器内部流场的数值模型[J].上海交通大学学报,2019,53(7):860-865.WANG Y F,WANG D D,HU J C,et al.A numerical model of the two-phase CO2 ejectors[J].Journal of Shanghai Jiaotong University,2019,53(7):860-865.
- [10]戴征舒,陈光明,张华,等.喷射器极限工况特性实验研究[J].制冷学报,2017,38(5):114-118.DAI Z S,CHEN G M,ZHANG H,et al.Experimental study on ejector performance under limiting operating condition[J].Journal of Refrigeration,2017,38(5):114-118.
- [11]朱春元.喷射器的性能优化分析[D].天津:天津商业大学,2015.ZHU C Y.The optimization analysis of ejector performance[J].Tianjin:Tianjin University of Commerce,2015.
- [12]何丽娟,王淑旭,吴夏梦,等.圆柱形混合室截面直径对喷射系数影响的实验研究[J].热能动力工程,2020,35(1):159-163.HE L J,WANG S X,WU X M,et al.Experimental study on the effect of cross-section diameter of cylindrical mixing chamber on ejection coefficient[J].Journal of Engineering for Thermal Energy and Power,2020,35(1):159-163.
- [13]杨新宇,王金锋,谢晶.喉部面积比对喷射器性能的影响分析[J].低温与超导,2011,39(6):68-71.YANG X Y,WANG J F,XIE J.The influence of throat area ratio on the performance of the ejector[J].Cryogenics & Superconductivity,2011,39(6):68-71.
- 喷射系数
- COP
- 发生温度
- 蒸发温度
- 冷凝温度
- 喉部内径
ejection factor - COP
- generation temperature
- evaporation temperature
- condensation temperature
- throat diameter