钙镁二元水合盐复合热化学储热单元的储热特性研究Study on energy storage performance of thermochemical heat storage unit based on composite calcium-magnesium binary salt hydrates
刘洪芝,刘思琪,叶振东,程禧龙,张弛
LIU Hongzhi,LIU Siqi,YE Zhendong,CHENG Xilong,ZHANG Chi
摘要(Abstract):
针对热化学储热材料在系统中储热密度低的问题,基于钙镁二元水合盐MgCl_2/2CaCl_2和天然介孔材料硅藻土(WSS),采用真空浸渍法制备了具有正方形空气通道的钙镁二元水合盐复合热化学储热单元WSS7,WSS13,WSS20,并对其进行了孔结构、微观形貌、吸附动力特性和循环稳定性的分析;建立了具有正方形空气通道的钙镁二元水合盐复合热化学储热单元的一维热质耦合数值模型,并验证其模型的可靠性;数值模拟了钙镁二元水合盐填充的质量分数和入口空气相对湿度对该储热单元在开式热化学储热系统中储热性能的影响。结果表明,入口空气相对湿度的增加可有效提高钙镁二元水合盐复合热化学储热单元出口的最大温度、延长出口空气高温持续时间、提高其放热功率和储热密度;钙镁二元水合盐的质量分数的增加可以有效延长出口空气高温(>40 ℃)的持续时间,其中钙镁二元水合盐的填充质量分数为20.38%的WSS20具有较好的储热性能,其储热密度为416 MJ/m~3,是WSS13的1.5倍,比较适用长周期的太阳能跨季节储热。
For the low heat storage density of thermochemical heat storage material in the system,the honeycomb thermochemical heat storage units with square air channels based on calcium and magnesium binary salt hydrates MgCl_2/2CaCl_2 and natural mesoporous Wakkanai siliceous shale(WSS) were developed using vacuum impregnation method,which were named as WSS7,WSS13 and WSS20.The pore structure,microstructure characteristics,sorption kinetics and stability were analyzed.A one-dimensional heat and mass transfer numerical model of the developed thermochemical heat storage unit with square air channels based on composite calcium and magnesium binary salt hydrates was established,and its reliability was verified.The effects of the mass fraction of calcium and magnesium binary hydrates and the relative humidity of the inlet air on the heat storage performance of the unit in an open thermochemical heat storage system were numerically studied.The results show that the increase of relative humidity of the inlet air can effectively increase the maximum outlet air temperature,prolong the high outlet air temperature duration,and increase the heat release power and heat storage density of the thermochemical heat storage unit based on composite calcium and magnesium binary salt hydrates.The increase of the mass fraction of calcium and magnesium binary hydrates can effectively prolong the high temperature duration of the outlet air(>40 ℃).Among them,WSS20 with a filling mass fraction of 20.38% has shown better heat storage performance,and its heat storage density is 416 MJ/m~3,which is 1.5 times that of WSS13.Therefore,WSS20 is better suitable for long-term trans-seasonal heat storage of solar energy.
关键词(KeyWords):
太阳能;多孔介质;钙镁二元水合盐;数值模拟;储热密度;放热功率;热回收效率
solar energy;porous material;calcium-magnesium binary salt hydrates;numerical simulation;heat storage density;thermal release power;heat recovery efficiency
基金项目(Foundation): 国家自然科学基金青年基金项目(51906157);国家自然科学基金面上项目(71974129)
作者(Author):
刘洪芝,刘思琪,叶振东,程禧龙,张弛
LIU Hongzhi,LIU Siqi,YE Zhendong,CHENG Xilong,ZHANG Chi
参考文献(References):
- [1]杨希贤,黄宇宏,王智辉,等.碳纳米/氢氧化锂复合材料的低温化学蓄热性能研究[J].工程热物理学报,2016,37(12):2512-2516.YANG X X,HHUANG H Y,WANG Z H,et al.The performance investigation on nano carbon-modified lithium hydroxide for low-temperature chemical heat storage[J].Journal of Engineering Thermophysis,2016,37(12):2512-2516.
- [2]SHEN Y L,LIU S L,MAZHAR A R,et al.A review of solar-driven short-term low temperature heat storage systems[J].Renewable and Sustainable Energy Reviews,2021,141:110824.
- [3]仵凡,张华,王子龙,等.相变蓄热材料对蓄热水箱分层特性的影响[J].流体机械,2022,50(2):20-27.WU F,ZHANG H,WANG Z,et al.Effect of phase change heat storage materials on thermal stratification property of heat storage water tank[J].Fluid Machinery,2022,50(2):20-27.
- [4]JARIMI H,AYDIN D,ZHANG Y N,et al.Materials characterization of innovative composite materials for solar-driven thermochemical heat storage(THS)suitable for building application[J].International Journal of Low-Carbon Technologies,2018,13(3):191.
- [5]SCAPINO L,ZONDAG H A,VANBAEL J,et al.Sorption heat storage for long-term low-temperature applications:A review on the advancements at material and prototype scale[J].Applied Energy,2017,190:920-948.
- [6]DING Y,RIFFAT S B.Thermochemical energy storage technologies for building applications:A state-of-the-art review[J].International Journal of Low-Carbon Technologies,2013,8:106-116.
- [7]WU H J,WANG S W,ZHU D S.Effects of impregnating variables on dynamic sorption characteristics and storage properties of composite sorbent for solar heat storage[J].Solar Energy,2007,81(7):864-871.
- [8]WU H J,WANG S W,ZHU D S,et al.Numerical analysis and evaluation of an open-type thermal storage system using composite sorbents[J].International Journal of Heat and Mass Transfer,2009,52(21):5262-5265.
- [9]CLARK R-J,FARID M.Experimental investigation into the performance of novel SrCl2-based composite material for thermochemical energy storage[J].Journal of Energy Storage,2021,36:102390.
- [10]李威,王秋旺,曾敏.水合盐基中低温热化学储热材料性能测试及数值研究[J].化工学报,2020,72(5):2763-2772.LI W,WAN Q W,ZENG M.Performance test and numerical study of salt hydrate-based thermochemical heat storage materials at middle-low temperature[J].CIESC Journal,2020,72(5):2763-2772.
- [11]LIU H Z,NAGANO K,TOGAWA J.A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system[J].Solar Energy,2015,111:186-200.
- [12]RAMMELBERG H U,OSTERLAND T,PRIEHS B,et al.Thermochemical heat storage materials-Performance of mixed salt hydrates[J].Solar Energy,2016,136:571-589.
- [13]LIU H Z,NAGANO K,SUGIYAMA D,et al.Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat[J].International Journal of Heat and Mass Transfer,2013,65:471-480.
- [14]LIU H Z,NAGANO K,MORITA A,et al.Experimental testing of a small sorption air cooler using composite material made from natural siliceous shale and chloride[J].Applied Thermal Engineering,2015,82:68-81.
- [15]GAEINI M,WIND R,DONKERS P A J,et al.Development of a validated 2D model for flow,moisture and heat transport in a packed bed reactor using MRI experiment and a lab-scale reactor setup[J].International Journal of Heat And Mass Transfer,2017,113(Supplement C):1116-1129.
- [16]SUZUKI M.Adsorption engineering[M].Japan:Kodansya Ltd.,Tokyo and Elsevier Science Publishers B.V.,Amsterdam,1990.
- [17]TSUJIGUCHI T,KODAMA A.Optimum operating/design concept for adsorbent desiccant wheel[C]//Japan Society of Refregerating and Air Conditioning Engineers,2012:107-118.
- [18]王永乐,刘杰,李凤成,等.基于COMSOL的高温双端面机械密封热力耦合分析[J].流体机械,2019,47(3):26-30.WANG Y,LIU J,LI F,et al.Analysis of thermal-mechanical coupling of double mechanical seals under high temperature based on COMSOL software[J].Fluid Machinery,2019,47(3):26-30.
- [19]GAEINI M,ZONDAG H A,RINDT C C M.Effect of kinetics on the thermal performance of a sorption heat storage reactor[J].Applied Thermal Engineering,2016,102(Supplement C):520-531.