管材特性对黏稠油水环输送稳定性的影响分析Analysis of the influence of pipe material characteristics on the stability of heavy oil transportation by water annulus
李鹏,尹晓云,杨思远,胡可,邓小娇,刘少钧,MASTOBAEV Boris N
LI Peng,YIN Xiaoyun,YANG Siyuan,HU Ke,DENG Xiaojiao,LIU Shaojun,Boris N MASTOBAEV
摘要(Abstract):
针对水环输送稠油过程中不能一直保持环状流动形态的问题,基于VOF两相流模型、标准k-ε湍流模型及CSF表面张力模型,对油水环状流在水平管中的流动情况进行了模拟分析。应用控制变量法分析管壁粗糙度与静态接触角对水环稳定性的影响,通过油水两相体积分数分布特征、轴向速度分布特点、管道沿线压力变化特性等指标综合评价水环稳定性的强弱。结果表明:随流动时间和运行距离的增长,油水环状流经历了同心环状流-偏心环状流-不完全环状流-分层流的演变过程。随管壁粗糙度的增大和静态接触角的减小,水环维持稳定流动的距离增长,管道沿线的总压降减小。管壁粗糙度对轴向速度分布和油核偏心率基本没有影响,不同管壁粗糙度下轴向速度均呈对称状分布,油核偏心率均约为0.73;而静态接触角对轴向速度分布和油核偏心率有较大影响,随静态接触角的增加,速度分布由对称状分布转变为舌头状分布,油核偏心率由0.73上升到1.0。截面持油率不随管壁粗糙度与静态接触角的变化而变化,不同模拟条件下均约为0.74。因此在实际输送过程中,可对现场使用的管材进行内表面改性处理,适当增大管壁粗糙度和减小静态接触角,以提高黏稠油水环输送的稳定性。
For the problem of inability to always keep the annular flow pattern in the transportation process of heavy oil by water annulus,numerical simulations for oil-water annular flow through a horizontal pipe were performed by FLUENT software based on VOF two-phase flow model,standard k-ε turbulence model and CSF surface tension model.The effects of pipe wall roughness and static contact angle on the stability of water annulus were analyzed by adopting control variable method.The stability of water annulus was comprehensively evaluated by the distribution characteristics of oil-water two-phase volume fraction,axial velocity distribution characteristics and variation characteristics of pressure along the pipeline.The simulation results indicate that with the increase of flow time and running distance,the oil-water annular flow experiences the evolution process of concentric annular flow,eccentric annular flow,incomplete annular flow,and stratified flow.With the increase of wall roughness and decrease of static contact angle,the stable flowing distance of water annulus increases,and the total pressure drop along the pipeline decreases.The pipe wall roughness almost has no effect on the axial velocity distribution and oil core eccentricity.Under different wall roughness,the axial velocity distributions are all symmetrical,and the oil core eccentricity is about 0.73.Whereas the static contact angle has great influence on the axial velocity distribution and oil core eccentricity.As the increase of static contact angle,the velocity distribution changes from symmetrical to tongue-like,and the oil core eccentricity increases from 0.73 to 1.0.The oil holdup does not change with the change of wall roughness and static contact angle,which is about 0.74 under different simulation conditions.Therefore,in order to improve the stability of water annulus transportation of heavy oil,the inner surface of pipe materials used on site can be modified to increase the wall roughness and decrease the static contact angle properly in the actual transportation process.
关键词(KeyWords):
稠油;水环;稳定性;管壁粗糙度;管壁润湿性;静态接触角
heavy oil;water annulus;stability;wall roughness;wall wettability;static contact angle
基金项目(Foundation): 国家自然科学基金项目(51779212,U19B2012)
作者(Author):
李鹏,尹晓云,杨思远,胡可,邓小娇,刘少钧,MASTOBAEV Boris N
LI Peng,YIN Xiaoyun,YANG Siyuan,HU Ke,DENG Xiaojiao,LIU Shaojun,Boris N MASTOBAEV
参考文献(References):
- [1]JING J Q,YIN X Y,MASTOBAEV B N,et al.Experimental study on highly viscous oil-water annular flow in a horizontal pipe with 90° elbow[J].International Journal of Multiphase Flow,2021,135:103499.
- [2]HART A.A review of technologies for transporting heavy crude oil and bitumen via pipelines[J].Journal of Petroleum Exploration and Production Technology,2014,4(3):327-336.
- [3]HASSON D,MANN V,NIR A.Annular flow of two immiscible liquids I.Mechanisms[J].Canadian Journal of Chemical Engineering,2010,48(5):514-520.
- [4]PARDA J W V,BANNWART A C.Modeling of vertical core-annular flows and application to heavy oil production[J].Journal of Energy Resources Technology,2001,123(3):194-199.
- [5]SHI J,AL-AWADI H,YEUNG H.An experimental investigation of high-viscosity oil-water flow in a horizontal pipe[J].Canadian Journal of Chemical Engineering,2017,95(12):2423-2434.
- [6]敬加强,尹晓云,MASTOBAEV B N,等.水平管内水环输送模拟稠油减阻特性[J].化工进展,2021,40(2):635-641.JING J Q,YIN X Y,MASTOBAEV B N,et al.Drag reduction characteristics of water annulus transportation of simulated heavy oil in horizontal pipeline[J].Chemical Industry and Engineering Progress,2021,40(2):635-641.
- [7]STRAZZA D,POESIO P.Experimental study on the restart of core-annular flow[J].Chemical Engineering Research and Design,2012,90(11):1711-1718.
- [8]JING J Q,DU M J,YIN R,et al.Numerical study on two-phase flow characteristics of heavy oil-water ring transport boundary layer[J].Journal of Petroleum Science & Engineering,2020,191:1-11.
- [9]SHI J,GOURMA M,YEUNG H.CFD simulation of horizontal oil-water flow with matched density and medium viscosity ratio in different flow regimes[J].Journal of Petroleum Science & Engineering,2017,151:373-383.
- [10]BRACKBILL J U,KOTHE D B,ZEMACH C.A continuum method for modeling surface tension[J].Journal of Computational Physics,1992,100(2):335-354.
- [11]卢圣旺,马艺,郑生宏,等.不同含气率下球阀内部流动特性试验及其数值模拟[J].流体机械,2017,45(4):1-6.LU S W,MA Y,ZHENG S H,et al.Experimental study and numerical simulation of two-phase flow characteristics on ball valve under different gas rate[J].Fluid Machinery,2017,45(4):1-6.
- [12]季龙庆.闭式系统安全阀泄放管道应力分析[J].化工设备与管道,2020,57(1):77-80.JI L Q.Stress Analysis of piping connected with safety valve in closed system[J].Process Equipment & Piping,2020,57(1):77-80.
- [13]ARNEY M S,BAI R,GUEVARA E,et al.Friction factor and holdup studies for lubricated pipelining—I.Experiments and correlations[J].International Journal of Multiphase Flow,1993,19(6):1061-1076.
- [14]SILVA R C R D,MOHAMED R S,BANNWART A C.Wettability alteration of internal surfaces of pipelines for use in the transportation of heavy oil via core-flow[J].Journal of Petroleum Science & Engineering,2006,51(1-2):17-25.
- [15]WU J Q,JIANG W M,LIU Y,et al.Study on hydrodynamic characteristics of oil-water annular flow in 90° elbow[J].Chemical Engineering Research & Design,2020,53(8):443-451.
- [16]敬加强,齐红媛,梁爱国,等.管道表面润湿性对层流流动阻力的影响[J].化工进展,2017,36(9):3203-3209.JING J Q,QI H Y,LIANG A G,et al.Experimental research on the effect of pipe surface wettability on flow resistance in laminar flow[J].Chemical Industry and Engineering Progress,2017,36(9):3203-3209.
- 稠油
- 水环
- 稳定性
- 管壁粗糙度
- 管壁润湿性
- 静态接触角
heavy oil - water annulus
- stability
- wall roughness
- wall wettability
- static contact angle
- 李鹏
- 尹晓云
- 杨思远
- 胡可
- 邓小娇
- 刘少钧
- MASTOBAEV Boris N
LI Peng - YIN Xiaoyun
- YANG Siyuan
- HU Ke
- DENG Xiaojiao
- LIU Shaojun
- Boris N MASTOBAEV
- 李鹏
- 尹晓云
- 杨思远
- 胡可
- 邓小娇
- 刘少钧
- MASTOBAEV Boris N
LI Peng - YIN Xiaoyun
- YANG Siyuan
- HU Ke
- DENG Xiaojiao
- LIU Shaojun
- Boris N MASTOBAEV