基于响应面高维代理模型的双吸式离心泵优化设计Optimization design of double-suction centrifugal pumps based on response surface high-dimensional surrogate models
黄腾,江新喻,黄秉方,胡一帆,刘志远,李琪飞
HUANG Teng,JIANG Xinyu,HUANG Bingfang,HU Yifan,LIU Zhiyuan,LI Qifei
摘要(Abstract):
为了提高双吸式离心泵的运行效率,对某水厂原水泵的叶轮结构进行了优化设计。通过对叶轮的几何结构进行系统研究,以叶轮后盖板的进口安放角β_(1h)、前盖板的进口安放角β_(1s)、后盖板的出口安放角β_(2h)、前盖板的出口安放角β_(2s)及叶片包角φ为主要优化参数。在变量的取值区间内对叶轮进行几何重构,并生成训练集,进而构建响应面高维代理模型。以此模型作为优化目标变量y,对叶轮进行了优化研究,并通过对比优化后双吸泵扬程、效率的数值模拟结果与试验结果,验证了模型的可靠性。结果表明,优化后的叶轮在设计工况下显著改善了流动分布,减少了不稳定流动,并有效降低了叶轮进口的湍动能,同时提升了叶轮出口的速度;在压水室出口一侧,泵的整体效率提升约3%;优化后的模型在流量为0.7Q_d,0.8Q_d,0.9Q_d,Q_d的各工况下均实现了超过3%的效率提升,其中,在0.7Q_d和0.8Q_d工况下,扬程的涨幅最大,增长了约0.8 m;优化措施显著拓宽了双吸式离心泵的高效工作区,提高了其整体性能。研究结果不仅验证了优化方法的有效性,而且为双吸式离心泵叶轮设计提供了一种高效的优化途径。
To improve the efficiency of double-suction centrifugal pumps,this study optimizes the impeller design for a specific water intake pump.Key parameters such as the inlet and outlet installation angles of the rear and front cover plates (β_(1h),β_(1s),β_(2h),β_(2s)) and the blade wrap angle(φ)were systematically varied.Geometric reconstructions of the impeller were made within these parameter ranges to create a training dataset,and a high-dimensional surrogate model based on response surface methodology was developed,and the reliability of the model was verified by comparing the numerical simulation results and experimental results of the optimized double suction pump head and efficiency.The results show that the optimized impeller enhanced flow distribution,reduced turbulence at the inlet,and increased outlet velocity,resulting in approximately 3%efficiency improvement,especially notable at the pressure chamber outlet.Efficiency gains of over 3%were observed at flow rates of 0.7Q_d,0.8Q_d,0.9Q_d,and Q_d,with the greatest head increase of about 0.8 m at 0.7Q_d and 0.8Q_d.This optimization extends the high-efficiency range of the pump and provides an effective method for impeller design.
关键词(KeyWords):
双吸式离心泵;响应面高维代理模型;优化设计
double-suction centrifugal pump;response surface high-dimensional agent model;optimized design
基金项目(Foundation): 国家自然科学基金项目(52066011);; 智慧水厂系统研究项目(2024050485)
作者(Author):
黄腾,江新喻,黄秉方,胡一帆,刘志远,李琪飞
HUANG Teng,JIANG Xinyu,HUANG Bingfang,HU Yifan,LIU Zhiyuan,LI Qifei
参考文献(References):
- [1]范凤仪.双吸式离心泵优化设计及结构动力特性分析[D].镇江:江苏大学,2022.FANG F Y. Optimization design and structure dynamic characteristics analysis of a double suction centrifugal pump[D]. Zhenjiang:Jiangsu University,2022.
- [2]徐李辉.全工况下混流式水轮机的流体动力学特性及能量耗散研究[D].昆明:昆明理工大学,2022.XU L H. Study on hydrodynamic characteristics and energy dissipation of francis turbine under all operating conditions[D]. Kunming:Kunming University of Science and Technology, 2022.
- [3]李晓俊.离心泵叶片前缘空化非定常流动机理及动力学特性研究[D].镇江:江苏大学,2013.LI X J. Mechanism and unsteady dynamic charac-teristics of leading edge cavitation in a centrifugal pump[D].Zhenjiang:Jiangsu University,2013.
- [4]王枫月,朱洋,宋龙波,等.基于遗传算法的离心泵并联优化及试验[J].水泵技术,2023(6):1-10.WANG F Y,ZHU Y,SONG L B,et al. Parallel optimization and experiment of centrifugal pump based on genetic algorithm[J]. Pump Technology,2023(6):1-10.
- [5]张宇淞,钱进,邓传记,等.清水离心泵再制造叶轮优化设计方法研究[J].贵州大学学报(自然科学版),2024,41(3):39-48.ZHANG Y S, QIAN J, DENG C J, et al. Research on optimization design method for the remanufacturing impeller of clear water centrifugal pump[J]. Journal of Guizhou University(Natural Science Edition),2024,41(3):39-48.
- [6]张金凤,俞鑫厚,高淑瑜,等.基于高维混合模型的离心泵叶轮子午面优化设计[J].排灌机械工程学报,2024,42(4):325-332.ZHANG J F, YU X H, GAO S Y, et al. Optimization design of meridional surface of centrifugal pumpimpeller based on high-dimensional hybrid model[J]. Journal of Drainage and Irrigation Machinery Engineering, 2024,42(4):325-332.
- [7]马文生,白危宇,李方忠,等.基于神经网络与遗传算法的离心泵汽蚀性能优化设计[J].中国农村水利水电,2024(3):206-213.MA W S, BAI W Y, LI F Z, et al. Optimization design of centrifugal pump cavitation performance basedon neural network and genetic algorithm[J].China Rural Water and Hydropower, 2024(3):206-213.
- [8]李良,李晓俊,杨顺银,等.基于PSO-LSSVR代理模型的石化多级离心泵叶轮优化设计[J].流体机械,2023,51(9):42-50.LI L, LI X J, YANG S Y, et al. Optimization design of petrochemical multistage centrifugal pump impeller based on PSO-LSSVR proxy model[J]. Fluid Machinery, 2023,51(9):42-50.
- [9]张翔,赖喜德,陈小明,等.基于PB-NSGA-Ⅲ算法的高速离心泵叶轮性能优化研究[J].机电工程,2023,40(12):1948-1956.ZANG X,LAI X D,CHEN X M,et al. Performance optimization of high-speed centrifugal pumpimpeller based on PB-NSGA-Ⅲalgorithm[J]. Journal of Mechanical&Electrical Engineering, 2023,40(12):1948-1956.
- [10]马文生,周清松,李方忠,等.基于BP神经网络与NSGA-Ⅱ算法的低比转速离心泵优化[J].中国农村水利水电,2023(4):189-194.MA W S,ZHOU Q S,LI F Z,et al.Optimization of low specific speed centrifugal pump based on BP network and NSGA-Ⅱalgorithm[J]. China Rural Water and Hydropower,2023(4):189-194.
- [11]孟原,史宝军,张德权.Kriging-高维代理模型建模方法研究与改进[J].机械工程学报,2024,60(5):249-263.MENG Y, SHI B J, ZANG D Q. Research and improvement of Kriging-HDMR modeling method[J].Journal of Mechanical Engineering, 2024,60(5):249-263.
- [12]薛建飞,梁冰,何星星,等.基于RSM的工业副产品改性硫铝酸钙水泥性能分析[J].排灌机械工程学报,2024,42(1):30-36.XUE J F, LIANG B, HE X X, et al. Performance analysis of industrial by-products modified calcium sulphoaluminate cement based on RSM[J]. Journal of Drainage and Irrigation Machinery Engineering,2024,42(1):30-36.
- [13] SHINGAI M, IIDA S, KAWAI N, et al. Extraction of the CDRH3 sequence of the mouse antibody repertoire selected upon influenza virus infection by subtraction of the background antibody repertoire[J].Journal of Virology, 2024,98(3):1-6.
- [14] BERGMAN D R,NORTON K,JAIN H V,et al.Connecting agent-based models with high-dimensional parameter spaces to multidimensional data using smore pars:A surrogate modeling approach[J].Bulletin of Mathematical Biology,2024,86(1):01240.
- [15] WANG X, CHANG X, WANG W,et al.An efficient reliability-based optimization method utilizing high-dimensional model representation and weight-point estimation method[J]. CMES-Computer Modeling in Engineering&Sciences, 2024,139(2):1775-1796.
- [16]洪顺军.深海采矿泵流动特性与磨损性能分析及叶轮结构减磨研究[D].长沙:中南大学,2022.HONG S J. Analysis of flow characteristics and wear performance and research of impeller structure to reduce wear of deep-sea mining pump[D]. Changsha:Central South University, 2022.
- [17] PAN J, PAN Y, LIU Q, et al. FED evaluation in a small double-suction reversible pump turbine considering sediment erosion[J]. Journal of Energy Storage, 2024,76:109549.
- [18]罗文.双吸离心泵正反转工况内部能量损失机理研究[D].兰州:兰州理工大学,2023.LUO W. Study on the internal energy loss mechanism of double suction centrifugal pump under forward and reverse conditions[D]. Lanzhou:Lanzhou University of Technology, 2023.
- 双吸式离心泵
- 响应面高维代理模型
- 优化设计
double-suction centrifugal pump - response surface high-dimensional agent model
- optimized design