双回路蓄能器充液阀的设计与研究Design and Research of Dual-circuit Accumulator Charging Valve
朱石沙,章岱,黄鹏程,吴彦波
ZHU Shi-sha,ZHANG Dai,HUANG Peng-cheng,WU Yan-Bo
摘要(Abstract):
为了提高轮式挖掘机制动系统的可靠性,采用换向阀和控制阀的组合形式设计了一种双回路蓄能器充液阀,并在单回路的基础上增加了一个内置梭阀,能够同时为前、后桥2个蓄能器迅速充液。利用AMESim软件仿真分析了前、后桥蓄能器压力的变化和充液阀至下游流量的变化,结果表明充液过程中前、后桥蓄能器压力上升迅速且平稳,到达上限压力时换向阀迅速换向;针对仿真结果,对充液阀进行了充液试验,试验结果中前、后桥蓄能器压力变化曲线与仿真结果基本吻合。研究结果表明设计的充液阀充液过程迅速且平稳,能够在工程车辆的全液压制动系统及相关领域中得到广泛应用。
In order to improve the reliability of the braking system of the wheeled excavator,a type of dual-circuit accumulator charging valve was designed in the combined form of reversing valve and control valve,and a built-in shuttle valve was added on the basis of the single circuit,in this way,it can charge the liquid simultaneously for two accumulators in the front and rear bridges quickly.The pressure change of the accumulators in front and rear bridges and the flow rate change of the charging valve to downstream flow rate were analyzed using AMESim software. The results show that the pressure of the accumulators in front and rear bridges rises quickly and smoothly in the charging process,the reversing valve reverses quickly when the pressure rises to the upper limit of the pressure;charging test for the charging valve was carried out according to the simulation results,and the pressure change curves of the accumulators in front and rear bridges in test results are basically in agreement with the simulation results. Research results show that the charging process of the designed charging valve is quickly and smoothly,it can be applied widely in the full hydraulic brake system and other related areas of the engineering vehicles.
关键词(KeyWords):
双回路蓄能器充液阀;控制阀设计;AMESim仿真;充液试验
dual-circuit accumulator charging valve;design of control valve;AMESim simulation;charging test
基金项目(Foundation):
作者(Author):
朱石沙,章岱,黄鹏程,吴彦波
ZHU Shi-sha,ZHANG Dai,HUANG Peng-cheng,WU Yan-Bo
参考文献(References):
- [1]Karthikeyan P,Sonawane D B,Subramanian S C. Model-basedcontrolofanelectropneumaticbrake systemforcommercialvehicles[J].International Journal of Automotive Technology,2010,11(4):507-515.
- [2]黄朝胜,刘明辉,侯国政,等.气压制动系统储能装置容量特性研究[J].汽车工程,2004,26(6):726-729.
- [3]Jang S,Yeo H,Kim C,et al.A study on regenerative braking for a parallel hybrid electricvehicle[J].KSME International Journal,2001,15(11):1490-1498.
- [4]应之丁.气液制动系统的探讨[J].上海铁道大学学报,1997(3):61-66.
- [5]臧延旭,邱城,胡铁华,等.管道内检测设备速度控制系统研究进展[J].化工设备与管道,2016(6):87-91.
- [6]蔡九茂,李莉,翟国亮,等.3种微灌砂过滤器水动三向阀性能比较试验研究[J].排灌机械工程学报,2017,35(7):596-601.
- [7]Chen J,Liu X,Wang T,et al.Dynamic characteristic of hydraulic brake valve of full hydraulicbraking system[J].Journal of Harbin Institute of Technology,2013,45(5):75-79.
- [8]GONG Mingde,WEI Hailong.Full power hydraulic brakesystembasedondoublepipelinesforheavy v e h i c l e s[J]. C h i n e s eJ o u r n a lo fM e c h a n i c a l Engineering,2011,24(5):790-797.
- [9]李艳利.蓄能器充液阀的工作原理及仿真分析[J].流体传动与控制,2016(3):9-11.
- [10]刘艳辉,阎竞实.全液压制动充液阀仿真与实验研究[J].实验室研究与探索,2016,35(12):88-92.
- [11]李军.XC-17型蓄能器充液阀的研制[J].矿冶,1998(3):11-14.
- [12]乔跃平,汤淮,王华,等.工程机械全液压制动系统的蓄能器充液阀:中国,CN101963164A[P]. 2011-02-02.
- [13]林慕义,孙大刚,张文明,等.全动力制动系统蓄能器充液阀的稳健设计[J].农业机械学报,2007(8):22-25.
- [14]余建平,罗骁,付佳,等.基于分离转捩模型的轴流式止回阀减阻试验研究[J].排灌机械工程学报,2017,35(5):410-416.
- [15]周大庆,刘跃飞.基于VOF模型的轴流泵机组起动过程数值模拟[J].排灌机械工程学报,2016,34(4):307-312.
- [16]王洪璞.低温控制阀阀座泄漏量检验标准解析[J].化工设备与管道,2016,53(3):84-89.
- [17]李前,陈文飞.焊接绝热气瓶用安全阀国家标准研究[J].压力容器,2016,33(2):57-60.
- [18]张超,陈团海,彭延建.大型LNG全容罐泄放阀火灾安全性分析[J].压力容器,2016,33(12):41-48.
- [19]杜卫,洪顺军,吴义勇,等.斜置双瓣止回阀内部流态的模拟与试验研究[J].流体机械,2016,44(2):7-11.
- [20]张振东,石楠楠,姜文平,等.全液压制动系统充液阀性能仿真与结构优化研究[J].机械设计与制造,2015(1):43-45.