风力驱动管式致热器流体循环制热性能研究Study on fluid circulation heating performance of piping-type heater driven by wind turbine
丁兴江,章学来,陆定宇,徐笑锋,刘伟,王绪哲
DING Xingjiang,ZHANG Xuelai,LU Dingyu,XU Xiaofeng,LIU Wei,WANG Xuzhe
摘要(Abstract):
为了将风能高效转换为热能,提出了一种新型风力驱动管式致热器,流体在管式致热器中循环流动,利用风能直接制热,致热器可兼有储能功能。通过理论分析推导出管式致热器的制热功率计算公式,利用实验关联式对工质进行不同工况分析,得到致热器在工质流经壳程外掠横管工况时热流密度及制热功率最大,每单位工质质量流量所对应的热流密度约为8.56 W/m~2,制热功率约为420.14 W/m~3,大约是工质流经管程准稳态湍流工况时的4倍。为提高系统热效率,在制热与传热两个环节,重点应提升其单位体积制热量或制热的单位面积热流密度值,工质之间传热所需表面积远低于制热所需值。
In order to efficiently convert wind energy into heat energy directly,a new type of piping-type heater driven by wind turbine was proposed.The fluid circulates in the heater and produce heat using wind energy,meanwhile,the heater can have energy storage function at the same time.Through theoretical analysis,the calculation formula for heating power of piping-type heater was derived.The experimental correlation was used to analyze different working conditions of the working medium and it was concluded that the heat flux and heating power are the highest when the working fluid flows through the shell side and sweeps the pipe surface.The heat flux corresponding to unit mass flow of the working medium is 8.56 W/m~2,and the heating power is 420.14 W/m~3,which is about 4 times of the steady state turbulence condition when the working medium flows through the pipe.In order to improve the thermal efficiency of the heater,the key point is to increase the heat flux per unit area or heating power per unit volume in the links of heating and heat transfer.The surface area for heat transfer required between the working media is much smaller than that for heating.
关键词(KeyWords):
致热器;流体循环;制热功率;热流密度;风力机
heater;fluid circulation;heating power;heat flux;wind turbine
基金项目(Foundation): 国家重点研发计划重点专项项目(2018YFD0401300);; 上海市科委资助项目(16040501600)
作者(Author):
丁兴江,章学来,陆定宇,徐笑锋,刘伟,王绪哲
DING Xingjiang,ZHANG Xuelai,LU Dingyu,XU Xiaofeng,LIU Wei,WANG Xuzhe
参考文献(References):
- [1]胡成春.风能利用前景美好[J].中国科技成果,2002(11):16-17.HU C C.Bright future of wind energy utilization[J].China Science Technology Achievements,2002(11):16-17.
- [2]黄群武,王一平,鲁林平,等.风能及其利用[M].天津:天津大学出版社,2015:114-120.HUANG Q W,WANG Y P,LU L P,et al.Wind energy and its utilization[M].Tianjin:Tianjin University Press,2015:114-120.
- [3]王士荣,沈德昌,刘国喜.风力提水与风力致热[M].北京:科学出版社,2012:167-176.WANG S R,SHEN D C,LIU G X.Wind and wind-induced hot water[M].Beijing:Science Press,2012:167-176.
- [4]李华山,冯晓东,刘通.我国风力致热技术研究进展[J].太阳能,2008,29(9):37-40.LI H S,FENG X D,LIU T.Research progress of wind energy heating technology in China[J].Solar Energy,2008,29(9):37-40.
- [5]李永光,马云玲.搅拌式风力致热装置启动性能研究[J].太阳能学报,2020,41(3):29-33.LI Y G,MA Y L.Study on start-up performance of stirring wind thermal device[J].Acta Energiae Solaris Sinica,2020,41(3):29-33.
- [6]刘晓畅.风力致热—地源热泵耦合系统联合运行综述[J].建筑与预算,2020(1):41-45.LIU X C.Review of combined operation between ground source heat pump system and wind induced heating system[J].Construction and Budget,2020(1):41-45.
- [7]赵建柱,宗玉峰,王国业,等.分层式液力搅拌致热系统致热效能研究[J].太阳能学报,2014,35(6):1034-1039.ZHAO J Z,ZONG Y F,WANG G Y,et al.Study of heating efficiency of layered-hydraulic stirring system[J].Acta Energiae Solaris Sinica,2014,35(6):1034-1039.
- [8]寇鹏,李永光.以自然风为动力的直接搅拌致热试验[J].上海电力学院学报,2012,28(6):521-524.KOU P,LI Y G.Experimental study of heating by direct stirring with natural wind as the driving force[J].Journal of Shanghai University of Electric Power,2012,28(6):521-524.
- [9]李永光,张志飞,翁建华,等.风力搅拌致热的试验研究[J].上海电力学院学报,2014,30(2):111-114.LI Y G,ZHANG Z F,WENG J H,et al.Experimental study of heating by stirring with wind power[J].Journal of Shanghai University of Electric Power,2014,30(2):111-114.
- [10]桂霆,李永光,张丽华,等.平直与圆柱叶片的搅拌致热特性试验研究[J].上海电力学院学报,2015,31(2):156-160.GUI T,LI Y G,ZHANG L H,et al.Experimental study of heating by direct stirring with flat blades and cylindrical blades[J].Journal of Shanghai University of Electric Power,2015,31(2):156-160.
- [11]王士荣,吴书远,武钢.液压式风力致热与蓄热装置[J].可再生能源,2002(4):29-31.WANG S R,WU S Y,WU G.Hydraulic wind heating and thermal storage device[J].Renewable Energy,2002(4):29-31.
- [12]黄应红,张红,赵建柱,等.液压式风力致热器及其控制方法[J].可再生能源,2004(1):39-40.HUANG Y H,ZHANG H,ZHAO J Z,et al.The hydraulic wind-heating system and its control method[J].Renewable Energy,2004(1):39-40.
- [13]韩中建,陈忠维.搅拌阻尼式风能致热循环介质选定研究[J].公安海警学院学报,2015,14(1):15-17.HAN Z J,CHEN Z W.Selected study of circulatory mediator in stirred and damped wind-heating system[J].Journal of China Maritime Police Academy,2015,14(1):15-17.
- [14]ISLAM M R,MEKHILEF S,SAIDUR R.Progress and recent trends of wind energy technology[J].Renewable and Sustainable Energy Reviews,2013,21:456-468.
- [15]NASIR H,AHMED U F.Vertical axis wind turbine—A review of various configurations and design techniques[J].Renewable and Sustainable Energy Reviews,2012,16:1926-1939.
- [16]JIN X,ZHAO G Y,GAO K J,et al.Darrieus vertical axis wind turbine:Basic research methods[J].Renewable and Sustainable Energy Reviews,2015,42:212-225.
- [17]胡以怀,金浩,冯是全,等.垂直轴风力机在风力致热中的应用研究[J].科技通报,2017,33(12):1-8.HU Y H,JIN H,FENG S Q,et al.Application of vertical axis wind turbine on wind-heating[J].Bulletin of Science and Technology,2017,33(12):1-8.
- [18]胡以怀,薛树业,刘洋,等.垂直轴风力机搅拌阻尼致热装置的试验研究[J].能源工程,2014(3):34-36.HU Y H,XUE S Y,LIU Y,et al.Experimental study on the stirred & damped wind-heating device of vertical axis wind turbine[J].Energy Engineering,2014(3):34-36.
- [19]金浩,胡以怀,唐娟娟,等.风力致热型海水淡化装置及参数设计[J].可再生能源,2017,35(5):747-752.JIN H,HU Y H,TANG J J,et al.Structure design and parameters calculation of wind-powered seawater desalination device[J].Renewable Energy,2017,35(5):747-752.
- [20]张祚福,张超,李俊瑞,等.5 kW搅拌风能致热器最大功率匹配设计[J].太阳能学报,2018,39(5):1467-1474.ZHANG Z F,ZHANG C,LI J R,et al.Maximum power matching design of a 5 kW liquid-stirred wind heating generator[J].Acta Energiae Solaris Sinica,2018,39(5):1467-1474.
- [21]王浩西.永磁涡流发热影响因素的二维电磁场有限元分析[D].西安:西北大学,2010.WANG H X.Influence factors of permanent magnet eddy current heating based on ANSYS Maxwell 2D[D].Xi'an:Northwest University,2010.
- [22]陈垂灿.基于涡流法的风能致热系统应用研究[D].桂林:广西大学,2010.CHEN C C.Wind heating system application based eddy current method[D].Guilin:Guangxi University,2010.
- [23]陈忠维,韩中建,徐国斌.热泵式风能制热试验分析[J].机械设计与研究,2015,42(11):19-21.CHEN Z W,HAN Z J,XU G B.Test and analysis of heat pump wind-heating system test platform[J].Machine Design & Research,2015,42(11):19-21.
- [24]王熙,李永光,王凯,等.采用风力制热供暖的经济性分析[J].可再生能源,2015,33(1):75-81.WANG X,LI Y G,WANG K,et al.Economy analysis of wind heating[J].Renewable Energy,2015,33(1):75-81.
- [25]杨世铭,陶文铨.传热学[M].第4版.北京:高等教育出版社,2006:567-569.YANG S M,TAO W Q.Heat transfer[M].4th Edition.Beijing:Higher Education Press,2006:567-569.
- [26]吴持恭.水力学(上册)[M].第4版.北京:高等教育出版社,2008:143-146.WU C G.Hydraulics(Volume 1)[M].4th Edition.Beijing:Higher Education Press,2008:143-146.
- [27]潘继红,田茂诚.管壳式换热器的分析与计算[M].北京:科学出版社,1996.PAN J H,TIAN M C.Analysis and calculation of shell and tube heat exchanger[M].Beijing:Science Press,1996.
- [28]陈剑波,郭春璐,陈付齐.夏热冬冷地区户式辐射空调住宅建筑能耗分析[J].流体机械,2020,48(4):68-71.CHEN J B,GUO C L,CHEN F Q.Energy consumption analysis of residential building with household radiant air conditioning system located in hot summer and cold winter region[J].Fluid Machinery,2020,48(4):68-71.
- [29]吴胜,何庆中,杨繁隆,等.基于时程分析法的全焊接球阀抗震特性分析[J].流体机械,2020,48(4):18-23.WU S,HE Q Z,YANG F L,et al.Seismic behavior analysis of all-welded ball valve based on time history analysis method[J].Fluid Machinery,2020,48(4):18-23.
- [30]金梧凤,王成,崔奉洙,等.新风送风方式对辐射吊顶制冷量影响研究[J].流体机械,2020,48(3):79-82.JIN W F,WANG C,CUI F Z.Study on the influence of air supply modes on cooling capacity of radiant ceiling[J].Fluid Machinery,2020,48(3):79-82.
- [31]彭翔,徐小青,李吉泉,等.考虑分布参数不确定的换热器封头结构优化研究[J].机电工程,2021,38(1):88-92.PENG X,XU X Q,LI J Q,et al.Structure optimization for inlet header of heat exchanger considering uncertain distribution parameters[J].Journal of Mechanical& Electrical Engineering,2021,38(1):88-92.
- [32]吴玉珍,冉治通.微型半开式叶轮高速离心泵结构对效率影响的试验研究[J].化工设备与管道,2018,55(3):42-45.Wu Y Z,Ran Z T.Experiment and study of effects of structures in miniature high-speed centrifugal pump with semi-open lmpeller to its efficiency[J].Process Equipment & Piping.2018,55(3):42-45.
- [33]史美中,王中铮.热交换器原理与设计[M].第5版.南京:东南大学出版社,2014:70-71.SHI M Z,WANG Z Z.Principle and design of heat exchangers[M].5th Edition.Nanjing:Southeast University Press,2014:70-71.