湿热地区运行参数对波纹翅片管换热器性能的影响研究Research on influences of operational parameters on the performance of wavy finned-tube heat exchanger in hot and humid regions
王冠,赵蕾,李延,郭小华
WANG Guan,ZHAO Lei,LI Yan,GUO Xiaohua
摘要(Abstract):
鉴于波纹翅片管换热器热湿工况运行优化缺少指南,建立了某9排管空气-水逆流式波纹翅片管换热器的传热除湿数学模型,利用MATLAB编程开展仿真,试验验证了仿真结果之后,在广州和杭州2种湿热气候条件下,探究了水流速度、风速以及进口水温对换热器换热、除湿性能的影响规律。结果显示:风速对换热量影响最大,进口水温对除湿量影响最大;在相同的水温、水速和风速下运行,在广州换热量与除湿量分别比在杭州高23.7%~44.1%和33.5%~64.3%,且几乎不随风速变化而变化,随水温降低高出的比例线性增大。并且,还给出了其在两地运行达到额定换热能力所应采取的各运行参数的区间。
To provide sufficient guidelines for optimizing operational parameters of wavy finned-tube heat exchanger under different thermal and moisture loads,a set of mathematical model was established to solve the heat transfer and dehumidification problem of a 9-row tube air-water counterflow wavy finned-tube heat exchanger.By using Matlab programming,the simulations were conducted and results were validated by experimental data at first.Then,the influence rules of water flow rate,wind speed,and inlet water temperature on heat transfer and dehumidification performances of the heat exchanger were explored under the weather conditions of Guangzhou and Hangzhou.The results show that wind speed has the greatest impact on heat exchange capacity,but inlet water temperature has the greatest impact on dehumidification capacity.Under the same water temperature,water speed and wind speed,the heat exchange and dehumidification capacities in Guangzhou were 23.7%~44.1% and 33.5%~64.3% higher than those in Hangzhou,respectively.And they almost did not vary with the change of wind speed,but increased linearly with the decrease of water temperature.The proper ranges of various operational parameters that should be taken to achieve the rated heat exchange capacity were proposed for operating in Guangzhou and Hangzhou.
关键词(KeyWords):
湿热地区;波纹翅片管换热器;运行参数;换热除湿性能
hot and humid regions;wavy finned-tube heat exchanger;operational parameters;heat exchange and dehumidification capacity
基金项目(Foundation): 国家自然科学基金项目(51878535)
作者(Author):
王冠,赵蕾,李延,郭小华
WANG Guan,ZHAO Lei,LI Yan,GUO Xiaohua
参考文献(References):
- [1]余晓平,付祥钊,廖小烽.浅析夏热冬冷地区低能耗住宅技术路线[J].重庆建筑大学学报,2008,30(6):116-119.YU X P,FU X Z,LIAO X F.Technical solutions for low energy consumption residences in subtropical regions[J].Journal of Chongqing Jianzhu University,2008,30(6):116-119.
- [2]王倩.房间空调器除湿特性与应用基础研究[D].广州:华南理工大学,2015.WANG Q.Study on Dehumidification characteristics and application fundamentals of room air conditioners[D].Guangzhou:South China University of Technology,2015.
- [3]葛凤华.室内环境品质与暖通空调[D].吉林:吉林大学,2004.GE F H.IEQ and HVAC[D].Jilin:Jilin University,2004.
- [4]YAO Y,LIAN Z,HOU Z.Thermal analysis of cooling coils based on a dynamic model[J].Applied Thermal Engineering,2004,24(7):1037-1050.
- [5]迟光亮,赵天怡,张吉礼,等.肋片管表冷器湿工况动态数学模型及仿真[J].暖通空调,2011,41(7):128-133.CHI G L,ZHAO T Y,ZHANG J L,et al.Dynamic mathematical model and simulation of fin-tube cooling coil s on wet conditions[J].HV&AC,2011,41(7):128-133.
- [6]梅奎,梁彩华,张小松.变流量对表冷器性能的影响[J].化工学报,2008,59(S2):109-113.MEI K,LIANG C H,ZHANG X S.Influence of variable-volume on performance of cooling coil[J].Journal of Chemical Industry and Engineering,2008,59(S2):109-113.
- [7]任述光.表冷器传热传质的数值模拟及特性研究[J].制冷与空调,2009,23(3):6-9.REN S G.Modeling and simulation on the cooling coil[J].Refrigeration and Air Conditioning,2009,23(3):6-9.
- [8]张青.中央空调系统节能运行控制方法研究[D].南京:东南大学,2016.ZHANG Q.Study on energy saving control stratedies of central air conditioning system[D].Nanjing:Southeast University,2016.
- [9]王斌.基于设备实际特性的集中空调系统空调箱运行纠偏[D].北京:北京建筑大学,2018.WANG B.The corrective control of AHU operation in central air conditioning system based on the actual characteristics of the equipment[D].Beijing:Beijing University of Civil Engineering and Architecture,2018.
- [10]张恩泽,唐志国.肋片间距对表冷器性能影响的实验研究[J].能源研究与信息,2002,18(3):162-168.ZHANG E Z,TANG Z G.Experimental investigations on the effects of fin-pitch on the performance of cooling coils[J].Energy Research and Information,2002,18(3):162-168.
- [11]ZHAN F L,ZHUANG.Influence of wet-particle deposition on air-side heat transfer and pressure drop of fin-and-tube heat exchangers[J].International Journal of Heat and Mass Transfer,2018,124:1230-1244.
- [12]冯梦怡,曾炜杰,谷波.不同回路结构表冷器的变工况性能分析[J].流体机械,2017,45(9):82-86.FENG M Y,ZENG W J,GU B.Analysis on the performance of fin-tube heat exchanger with different structures in variable conditions[J].Fluid Machinery,2017,45(9):82-86.
- [13]李闯,谷波,郝源成.空调箱表冷器性能仿真与结构优化[J].流体机械,2012,40(3):71-75.LI C,GU B,HAO Y C.Performance simulation and structure optimization for fin-tube heat exchanger in air handle unit[J].Fluid Machinery,2012,40(3):71-75.
- [14]史维秀,陈红迪.微胶囊流体微通道传热研究进展[J].流体机械,2019,47(6):83-88.SHI W X,CHEN H D.Researches on heat transfer of microcapsule fluids in microchannels[J].Fluid Machinery,2019,47(6):83-88.
- [15]贾利梅.小管径水平圆管管外冷凝传热数值分析[J].流体机械,2020,48(7):84-88.JIA L M.Numerical analysis of condensation heat transfer for small diameter horizontal circular tubes[J].Fluid Machinery,2020,48(7):84-88.
- [16]范继珩,冯毅.管间距对翅片油冷却器传热及阻力性能的影响[J].压力容器,2018,35(8):16-23.FAN J H,FENG Y.Influence of tube pitch on heat transfer and resistance characteristics of finned oil cooler[J].Pressure Vessel Technology,2018,35(8):16-23.
- [17]唐正男,苏磊.水基Fe3O4磁性液体脉动热管传热性能实验研究[J].机电工程,2018,35(12):1319-1323.TANG Z N,SU L.Heat transfer performance of pulsating heat pipe with water based Fe3O4 fluid[J].Journal of Mechanical & Electrical Engineering,2018,35(12):1319-1323.
- [18]GNIELINSKI V.On heat transfer in tubes[J].International Journal of Heat and Mass Transfer,2013,63:134-140.
- [19]COLBURN A P,HOUGEN O A.Design of cooler condensers for mixtures of vapors with noncondensing gases[J].Industrial & Engineering Chemistry,1934,26(11):1178-1182.
- [20]WANG C C,LIN Y T,LEE C J,et al.An investigation of wavy fin-and-tube heat exchangers:a contribution to databank [J].Experimental Heat Transfer,1999,12(1):73-89.
- [21]KUVANNARAT T,WANG C C,WONGWISES S.Effect of fin thickness on the air-side performance of wavy fin-and-tube heat exchangers under dehumidifying conditions[J].International Journal of Heat and Mass Transfer,2006,49(15-16):2587-2596.