含砂原油对方形补偿器的冲蚀模拟Erosion simulation of sandy crude oil on square compensator
陈一鸣,陈微,刘宏达,何金宝
CHEN Yiming,CHEN Wei,LIU Hongda,HE Jinbao
摘要(Abstract):
为研究不同因素对方形补偿器内固体颗粒冲蚀作用规律的影响,基于DPM模型,结合流固耦合稳态模拟及控制变量的方法,对热补偿能力相同的四种标准方形补偿器内壁面的冲蚀速率进行计算。结果表明,4种补偿器内的冲蚀速率随固体颗粒质量流率的增加而增大,其中,Ⅲ型补偿器C弯管局部冲蚀集中区最大占比达到96.2%,Ⅰ型补偿器冲蚀速率与质量流率近似呈线性正相关;在不同粒径范围内,4种补偿器先后出现波动的冲蚀速率变化周期,各型补偿器最大冲蚀速率差距明显。其中,Ⅳ型补偿器内的冲蚀速率可达到1×10~(-7) kg/(m~2·s)量级,明显高于其它3类补偿器;在热补偿量一定的情况下,弯径比为1.5的Ⅳ型补偿器最大冲蚀速率达到弯径比为2.75的Ⅰ型补偿器的6倍,随弯径比的增加,各型补偿器的冲蚀区域均出现明显的扩大。其中,Ⅳ型补偿器在外弧面区出现最大范围0°~240°的“带状”磨蚀区域,最大冲蚀速率逐渐下降并在弯径比为1.5时达到最低值。因此,应根据流体介质中固体颗粒粒径、质量流率及补偿器结构合理选择补偿器类型,从而减轻管件局部点蚀与大范围磨蚀对管道内表面电化学腐蚀保护膜的破坏,以降低冲刷腐蚀速率。
In order to study how different factors affect the erosion of solid particles on the square compensator,based on the DPM model and in combination with the method of fluid-structure coupling steady-state simulation and control variables,the erosion rates of the inner walls of the four standard square compensators with the same thermal compensation ability were calculated.The results show that the erosion rate in the four compensators increases with the increase of the mass flow rate of solid particles.Among them,the local erosion concentrated area of C-bend pipe of typeⅢ compensator accounts for the largest proportion,which is 96.2%.The erosion rate of the type Ⅰ compensator is approximately linear and positively related to the mass flow rate.In different particle size ranges,the four compensators have successively fluctuating erosion rate change cycles,and the maximum erosion rate of each type of compensator has a significant difference.Among them,the erosion rate in the type IV compensator can reach the order of 1×10~(-7) kg/(m~2·s),which is significantly higher than the other three types of compensator.Under the condition of a given amount of thermal compensation,the maximum erosion rate of type IV compensator with a bending diameter ratio of 1.5 reaches 6 times that of type I compensator with a bending diameter ratio of 2.75.With the increase of the bending diameter ratio,the erosion area of each type of compensator has been significantly enlarged.Among them,type IV compensator has a“band-like”abrasion area with a maximum range of 0°~240° in the outer arc area,the maximum erosion rate decreased gradually and reached its lowest value at a bend-to-diameter ratio of 4,the compensator type should be reasonably selected according to the sizes of solid particles in the fluid medium,mass flow rate and compensator structure so as to reduce the damage of the electrochemical corrosion protection film on the inner surface of the pipe by local pitting and large-scale abrasion of the pipe fittings,and reduce the erosion corrosion rate.
关键词(KeyWords):
方形补偿器;流固耦合;冲刷腐蚀;冲蚀速率;DPM模型
square compensator;fluid-solid coupling;erosion corrosion;erosion rate;DPM model
基金项目(Foundation): 辽宁省教育厅科学研究经费项目(L2020025)
作者(Author):
陈一鸣,陈微,刘宏达,何金宝
CHEN Yiming,CHEN Wei,LIU Hongda,HE Jinbao
参考文献(References):
- [1]王勇,曾涛,徐银香,等.固体颗粒对水力旋流器冲蚀磨损特性的影响[J].流体机械,2019,47(5):50-55.WANG Y,ZENG T,XU Y X,et al.Effect of solid particles on the erosion wear characteristics of hydrocyclone[J].Fluid Machinery,2019,47(5):50-55.
- [2]OU G F,BIE K,ZHANG Z J,et al.Numerial simulation on the erosion wear of a multiphase flow pipeline[J].International Journal of a Advanced Manufacturing Technology,2018,96:1705-1713.
- [3]LIPSETT M G,BHUSHAN V.Modeling erosion wear rates in slurry flotation cells[J].Journal of Failure Analysis and Prevention,2012,12:51-65.
- [4]梁光川,聂畅,刘奇,等.基于FLUENT的输油管道弯头冲蚀分析[J].腐蚀与防护,2013,34(9):822-824.LIANG G C,NIE C,LIU Q,et al.Erosion-corrosion analysis of oil pipeline elbow based on FLUENT[J].Corrosion & Protection,2013,34(9):822-824.
- [5]彭文山,曹学文.固体颗粒对液/固两相流弯管冲蚀作用分析[J].中国腐蚀与防护学报,2015,35(6):556-562.PENG W S,CAO X W.Analysis on erosion of pipe bends induced by liquid-solid two-phase flow[J].Journal of Chinese Society for Corrosion and Protection,2015,35(6):556-562.
- [6]偶国富,许根富,朱祖超,等.弯管冲蚀失效流固耦合机理及数值模拟[J].机械工程学报,2009,45(11):119-124.OU G F,XU G F,ZHU Z C,et al.Fluid-structure interaction mechanism and numerical simulation of elbow erosion failure[J].Journal of Mechanical Engineering,2009,45(11):119-124.
- [7]张孟昀,马贵阳,李存磊,等.弯管与盲通管冲蚀磨损对比分析研究[J].中国安全生产科学技术,2017,13(3):76-81.ZHANG M J,MA G Y,LI C L,et al.Comparative analysis on erosion wear of elbow pipe and blind tube[J].Journal of Safety Science and Technology,2017,13(3):76-81.
- [8]陈宇,马贵阳.连接结构尺寸对三通管冲蚀磨损影响的数值模拟[J].中国安全生产科学技术,2017,13(12):91-97.CHEN Y,MA G Y.Numerical simulation on influence of connection structure and size on erosive wear of tee pipe[J].Journal of Safety Science and Technology,2017,13(12):91-97.
- [9]冯留海,王江云,毛羽,等.突扩突缩管内液-固冲蚀的数值模拟[J].石油学报(石油加工),2014,30(6):1080-1085.FENG L M,WANG J Y,MAO Y,et al.Numerical simulation of liquid-solid erosion sudden expansion and contraction tube[J].Acta Petrolei Sinica(Petroleum Processing Section),2014,30(6):1080-1085.
- [10]王博,康凯,郐楚婷,等.低浓度多相流管道冲蚀磨损数值模拟[J].北京化工大学学报(自然科学版),2019,46(2):22-30.WANG B,KANG K,QUAI C T,et al.Numerical simulation of the erosion wear of pipes with a low concentration of particles and multiphase flow[J].Journal of Beijing University of Chemical Technology(Natural Science Edition),2019,46(2):22-30.
- [11]李琴,邹康,刘海东,等.基于颗粒受力的旋风分离器冲蚀机理的研究[J].流体机械,2017,45(3):42-47.LI Q,ZOU K,LIU H D,et al.The erosion mechanism research of cyclone based on force operating of particles[J].Fluid Machinery,2017,45(3):42-47.
- [12]孙海疆,偶国富,肖定浩,等.煤液化多相流输送弯管冲蚀磨损数值研究[J].流体机械,2013,41(8):45-47.SUN H J,OU G F,XIAO D H,et al.Numerical investigation of erosion for multiphase flow elbow in coal liquefaction[J].Fluid Machinery,2013,41(8):45-47.
- [13]LAUNDER B E,SPALDIING D B.The numerical computation of turbulent flows[J].Computer Methods in Applied Mechanics and Engineering,1974,3:269-289.
- [14]FLUENT INC.Fluent user’s guide[M].US:Fluent Inc,2006.
- [15]NJOBUENWU D O,FAIRWEATHER M.Modelling of pipe bend erosion by dilute particle suspensions[J].Computers and Chemical Engineering,2012,42:235-247.
- [16]PARSI M,NAJMI K,NAJAFIFARD F,et al.A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications[J].Journal of Natural Gas Science and Engineering,2014,21:850-873.
- [17]MUNSON B R,OKIISHI T H,HUEBSCH W W,et al.Fundamentals of fluid mechanics[M].Hoboken:Politehnica Press,2016.
- [18]张立博.流化床中宽筛分颗粒停留时间调控研究[D].北京:中国科学院大学,2018.ZHANG L B.Control of the residence time of particles with wide size distribution in fluidized beds[D].Beijing:University of Chinese Academy of Sciences,2018.
- [19]丁欣硕,刘斌.Fluent 17.0流体仿真从入门到精通[M].北京:清华大学出版社,2018.DING X S,LIU B.Fluent 17.0 fluid simulation from entry to master[M].Beijing:Tsinghua University Press,2018.
- [20]黎伟,李配,舒晨旭.基于CFD对60.3 mm弯管冲蚀仿真预测[J].表面技术,2020,49(8):178-184.LI W,LI P,SHU C X.Simulation prediction of 60.3 mm elbow erosion based CFD[J].Surface Technology,2020,49(8):178-184.
- [21]信志涛,赵玲,吴明,等.基于ANSYS的输油管道数值分析[J].当代化工,2016,45(8):1814-1816.XI Z T,ZHAO L,WU M,et al.Numerical simulation of oil pipeline based on ANSYS[J].Contemporary Chemical Industry,2016,45(8):1814-1816.
- [22]董双岭,曹炳阳,过增元.作用在粒子上的热泳升力研究[J].工程热物理学报,2015,36(5):1063-1066.DONG S L,CAO B Y,GUO Z Y.The research of lift force on particles related with thermophoresis[J].Journal of Engineering Thermophysics,2015,36(5):1063-1066.
- [23]李雪浩,李兴虎,寇桂岳,等.DPF中颗粒物径向分布影响因素分析[J].南昌工程学院学报,2017,36(3):107-110.LI X H,LI X H,KOU G Y,et al.Analysis of the influence factors of distribution and motion of particles in DPF[J].Journal of Nanchang Institute of Technology,2017,36(3):107-110.
- [24]过江,张碧肖.固-液两相流充填管道输送冲蚀磨损数值研究[J].科技导报,2015,33(11):49-53.GUO J,ZHANG B X.Numerical investigation of impact erosion in liquid-solid two-phase flow of the backfilling pipe[J].Science & Technology Review,2015,33(11):49-53.
- [25]彭文山,曹学文.管道参数对液/固两相流弯管流场及冲蚀影响分析[J].中国腐蚀与防护学报,2016,36(1):87-96.PENG W S,CAO X W.Influence of pipe parameters on flow field of liquid-solid two-phase flow and erosion of pipe bend[J].Journal of Chinese Society for Corrosion and Protection,2016,36(1):87-96.
- [26]吕志鹏,李方淼,李美求,等.含砂介质对异径管的冲蚀磨损分析[J].石油机械,2020,48(4):106-111.LYU Z P,LI F M,LI M Q,et al.Analysis of erosion wear of sand-containing medium on variable diameter pipe[J].China Petroleum Machinery,2020,48(4):106-111.
- [27]PEREIRA G C,DE SOUZA F J,DE MORO MARTINS D A.Numerical prediction of the erosion due to particles in elbows[J].Powder Technology,2014,261:105-117.
- [28]杨鸿麟,吴玉国,蒋硕硕,等.文丘里管冲刷腐蚀数值模拟[J].表面技术,2018,47(10):193-199.YANG H L,WU Y G,JING S S,et al.Numerical simulation of erosion prediction in venturi[J].Surface Technology,2018,47(10):193-199.
- [29]秦宗川,危书涛,姚佐权,等.非焊接瓶式容器建造技术的探讨[J].压力容器,2020,37(6):63-71.QING Z C,WEI S T,YAO Z Q,et al.Discussions on construction of non-welded cylinder type vessels[J].Pressure Vessel Technology,2020,37(6):63-71.
- [30]梅文娟,郑兆启,李占勇,等.生鲜食品包装机的研究[J].包装与食品机械,2021,39(1):82-88.MEI W J,ZHENG Z Q,LI Z Y,et al.Study on packaging machine for fresh food[J].Packaging and Food Machinery,2021,39(1):82-88.
- [31]曹学文,胥锟,彭文山.弯管液固两相流冲蚀失效模拟分析[J].表面技术,2016,45(8):124-131.CAO X W,XU K,PENG W S.Simulation and analysis of liquid-solid two-phase flow erosion failure[J].Surface Technology,2016,45(8):124-131.