波浪型结节改形风机翼型的气动性能研究Numerical Study of Aerodynamic Characteristics on the Wind Turbine Airfoil with Leading and Tailing Edges Protuberances
邹琳;
ZOU Lin(Wuhan University of Technology,Wuhan 430070,China)
摘要(Abstract):
采用大涡模拟湍流模型对前后缘波浪型结节改形风机翼型在雷偌数5×104下不同攻角的流动控制机理进行了数值研究。研究表明:相比于标准直翼型NACA0012,改形风机翼型在失速区得到了更平缓的升力曲线。在小攻角(α<12°)工况下,改形翼型的升力系数稍小,然而当攻角(α>12°)时,其升力系数明显提高,最高可达37%。改形翼型由于其前后缘沿展向呈正弦波浪型变化,在不同截面处的呈现出明显不同的尾迹结构,从而导致其表面自由剪切层发生扭曲。这种三维涡在其产生、发展以及推移过程中的相互作用,使得其三维尾迹涡结构在失速区能得到很好的控制,从而达到延迟流动分离及减小失速影响的目的。深入研究前后缘波浪型结节改形风机翼型尾迹结构的流动分布及物理特性等,对于揭示前后缘结节改形风机翼型流动控制机理具有非常重要的意义。
The effect of the protuberances leading and tailing edges on the aerodynamic characteristics of a Wind Turbine modified airfoil is studied using the large eddy simulations.The control mechanisms of a varicose airfoil with different angles of attack at the Reynolds number of Re=5×104 have been studied using the large eddy simulations.Due to the sinusoidal spanwise waviness of the modified airfoil,a more gentle lift characteristic is obtained during stall.For angles of attack less than the baseline stall angle of a NACA0012 airfoil(α≈12°),a lift coefficient reduction was observed for the varicose airfoils,while the lift coefficient increases up to 37% greater than that of a NACA0012 airfoil when the angle of attack is larger than the baseline stall angle of the NACA0012 airfoil.In general,the leading edge protuberances results in the flow separation delay occur,which result in the delay of the stall on the whole airfoil and reduces the abrupt drop of lift at stall condition.However,no drag reduction can be found using such modified airfoil.It is hoped that such modified airfoil will be helpful on the design of wind turbine to enhance their working efficiency.
关键词(KeyWords):
波浪型结节改形翼型;流动控制;大涡模拟;失速
modified wavy airfoil;flow control;large eddy simulation;stall
基金项目(Foundation): 国家自然科学基金项目资助(11172220);; 中央高校基本科研业务费专项资金资助(2010-Ia-030);; 高等学校博士学科点专项科研基金资助课题(200804971025)
作者(Author):
邹琳;
ZOU Lin(Wuhan University of Technology,Wuhan 430070,China)
Email:
DOI:
参考文献(References):
- [1]Feszty D,Gillies E A,Vezza M.,Alleviation of airfoildynamic stall moments via trailing-edge-flap flowcontrol[J].AIAA Journal,2004,42:17-25.
- [2]Macumber D L,Annaswamy A,Beal D N,et al.Noisecontrol due to the stator wake blade interaction via tailarticulation[J].IEEE Journal of Oceanic Engineering,2007,32:551-564.
- [3]Nierop E A,Alben S,Brenner M P.How bumps onwhale flippers delay stall:An aerodynamic model[J].Physical Review Letters,2008,054502-1-4.
- [4]Peacock T,Bradley E,Going with(or against)theflow[J].Science,2008,320:1302-1303.
- [5]孙少明,徐成宇,任露泉,等.轴流风机仿生叶片降噪试验研究及机理分析[J].吉林大学学报,2009,39:382-387.
- [6]庄月晴,黄典贵,前缘旋转的风力机翼型气动性能研究[J].工程热物理学报,2011,32:43-46.
- [7]李银然,李仁年,王秀勇,等.Gurney襟翼对风力机专用翼型气动性能的影响[J].流体机械,2011,39(1):16-19.
- [8]ZOU L,LIN Y F.Force reduction of flow around a si-nusoidal wavy cylinder[J].Journal of Hydrodynam-ics,2009,21:326-335.
- [9]邹琳,林玉峰,亚临界雷诺数下波浪型圆柱绕流的数值模拟及减阻研究[J].水动力学研究与进展(A辑),2010,25:31-36.
- [10]Yen S C,Huang L C.Flow patterns and aerodynamicperformance of unswept and swept-back wings[J].ASME J Fluid Eng.,2009,131:111101-1-10.
- [11]Zhang M M,Zhou Y,Cheng L.Control of poststallairfoil aerodynamics based on surface perturbation[J].AIAA J,2008,46:2510-2519.
- [12]Johari H.,Durgin W.W.Direct measurement of cir-culation using ultrasound[J].Exps Fluid,1998,25:445-454.
- [13]Mittal S.Unsteady transonic flow past an airfoil in achannel[C].The 9th Asian Congress Fluid Mech.Chennai,Madras,1997,279-282.