冲击射流冷却高功率电子元件的试验研究Experimental study on impinging jet cooling of high power electronic components
吕静,黄伶俐,刘洪芝,吕艈昶
LYU Jing,HUANG Lingli,LIU Hongzhi,LYU Yuchang
摘要(Abstract):
电子产品的发展趋势是运行速度快、发热功率大、体积小,散热能力对其性能影响很大。冲击射流因其冷却效果好被广泛用于冷却电子产品。基于冲击射流冷却技术,设计搭建了一个空气冲击射流冷却试验装置,通过试验研究了加热功率、射流温度、喷嘴与壁面间距离和喷嘴直径对空气冲击射流换热的影响:加热功率在15.7~49.0 W范围内,沿径向壁面温度均先降后升、换热系数先增后减;随着加热功率增大,壁面径向温度分布越不均匀、平均温度升高,对换热系数没有影响;射流温度一定,沿径向壁面温度先降后升、局部换热系数先增后减;随着射流温度升高,壁面平均温度小幅升高、径向温度分布越均匀,空气物性发生变化,换热系数略有提高,但换热系数的最大值位置不变。
The development trend of electronic products is fast running,high heating power and small volume.Its heat dissipation capacity has a great impact on its performance.Impinging jet is widely used to cool electronic products because of its good cooling effect.Based on impinging jet cooling technology,an air impinging jet cooling experimental device was designed and built.The effects of heating power,jet temperature,distance between nozzle and wall and nozzle diameter on the heat transfer of air impinging jet were studied experimentally:when the heating power is between 15.7 W and 49.0 W,the radial wall temperature first decreases and then rises,and the heat transfer coefficient increases first and then decreases;with the increase of heating power,the radial temperature distribution becomes more uneven and the average temperature increases,which has no effect on the heat transfer coefficient;when the jet temperature is constant,the wall temperature decreases first and then increases and then decreases;with the increase of jet temperature,the wall surface is flat When the average temperature increases slightly and the radial temperature distribution is more uniform,the air physical properties change and the heat transfer coefficient increases slightly,but the position of the maximum value of the heat transfer coefficient remains unchanged.
关键词(KeyWords):
电子元件;射流冷却;换热特性
electronic components;jet cooling;heat transfer characteristics
基金项目(Foundation): 国家自然科学基金青年项目(51906157)
作者(Author):
吕静,黄伶俐,刘洪芝,吕艈昶
LYU Jing,HUANG Lingli,LIU Hongzhi,LYU Yuchang
参考文献(References):
- [1]MUDAWAR I.Assessment of high-heat-flux thermal management schemes[J].IEEE Transactions on Components and Packaging Technologies,2001,24(2):122-141.
- [2]MAHAJAN R,NAIR R,WAKHARKAR V,et al.Emerging directions for packaging technologies[J].Intel Technology Journal,2002,6(2):62-75.
- [3]马永锡,张红,庄骏.电子元件发热与冷却技术[C]//新型传热技术和设备研讨会.2005,670-674.MA Y X,ZHANG H,ZHUANG J.heating and cooling technology of electronic components[C]//Symposium on New Heat Transfer Technology and Equipment,2005:670-674
- [4]CHOO K S,KIM S J.Heat transfer characteristics of impinging air jets under a fixed pumping power condition[J].International Journal of Heat and Mass Transfer,2010,53(1-3):320-326.
- [5]GARIMELLA S V,NENAYDYKH B.Nozzle-geometry effects in liquid jet impingement heat transfer[J].International Journal of Heat and Mass Transfer,1996,39(14):2915-2923.
- [6]WEN M Y,JANG K J.An impingement cooling on a flat surface by using circular jet with longitudinal swirling strips[J].International Journal of Heat and Mass Transfer,2003,46(24):4657-4667.
- [7]OLIPHANT K,WEBB B W,MCQUAY M Q.An experimental comparison of liquid jet array and spray impingement cooling in the non-boiling regime[J].Experimental Thermal & Fluid Science,1998,18(1):1-10.
- [8]MORALES R D,L■PEZ A G,OLIVARES I M.Heat transfer analysis during water spray cooling of steel rods[J].ISIJ International,1990,30(1):48-57.
- [9]LIN L,PONNAPPAN R.Heat transfer characteristics of spray cooling in a closed loop[J].International Journal of Heat & Mass Transfer,2003,46(20):3737-3746.
- [10]GARIMELLA S V,RICE R A.Confined and submerged liquid jet impingement heat transfer[J].Journal of Heat Transfer,1995,117(4):871.
- [11]FABBRI M,DHIR V K.Optimized heat transfer for high power electronic cooling using arrays of microjets[J].Journal of Heat Transfer,2005,127(7):760-769.
- [12]WEATHERS J B,CROSATTI L,KRUESSMANN R,et al.Development of modular helium-cooled divertor for DEMO based on the multi-jet impingement (HEMJ) concept:experimental validation of thermal performance[J].Fusion Engineering & Design,2008,83(7):1120-1125.
- [13]耿铁,李德群,周华民,等.冲击射流及其强化换热的研究进展[J].机械设计与制造,2006(6):154-156.GENG T,LI D Q,ZHOU H M,et al.Research progress of impinging jet and its heat transfer enhancement[J].Mechanical Design and Manufacturing,2006(6):154-156.
- [14]董志勇.冲击射流[M].北京:海洋出版社,1997:57-58,193-194.DONG Z Y.Impinging jet[M].Beijing:Ocean Press,1997:57-58,193-194.
- [15]龙天渝,蔡增基.流体力学(第二版)[M].北京:中国建筑工业出版社:北京,2012:161.LONG T Y,CAI Z J.Fluid mechanics (Second Edition)[M].Beijing:China Construction Industry Press,2012:161
- [16]李长庚.基于冲击射流的电子元件冷却方法研究[D].湖南:中南大学,2009.LI C G.Research on cooling method of electronic components based on impinging jet[D].Hunan:Central South University,2009.