排气管内置壁面厚度对旋风分离器性能的影响Effect of Built-in Wall Thickness of Exhaust Pipe on Cyclone Separator Performance
李杰,马欣,赖科,徐洋洋
LI Jie,MA Xin,LAI Ke,XU Yang-yang
摘要(Abstract):
针对旋风分离器的排气管内置壁面厚度对其流场和分离性能的影响。采用数值试验模拟分析了旋风分离器的对应于7组不同排气管内置壁面厚度下的速度云图、压降值、切割粒径以及速度矢量的变化情况。结果表明,随排气管内置壁面厚度的逐渐增大,其筒体段和锥体段的整体切向速度依次减小,在筒体段下半部分和锥体段,当内置壁面厚度大于等于0.1D时,中心位置存在二次涡流现象且对其分离效率会产生负影响;随排气管内置壁面厚度的增加,整体轴向速度基本依次增大;随排气管内置壁面厚度的增加,压降值依次减少,切割粒径先略微减少然后一直增大,壁面厚度为0.025D时,其分离效率为最优;随排气管壁面厚度的增加,在排气管内置壁面的正下方,逐渐形成涡旋,并且涡旋强度逐渐增大。忽略旋风分离器排气管内置壁面厚度变化,会造成性能预测和数值模拟上的偏差。
in view of the influence of the built-in wall thickness of exhaust pipe of the cyclone separator on its flow field and performance,the velocity cloud chart,pressure drop value,cutting particle size and velocity vector change of the cyclone separator corresponding to seven sets of different exhaust pipe wall thickness were simulated and analyzed by numerical experiments.The results show that with the gradual increase of the built-in wall thickness of the exhaust pipe,the overall tangential velocity of the cylinder and cone sections decreases in turn. In the lower half of the cylinder and the conical section,when the wall thickness is greater than or equal to 0.1 D,there exists the phenomenon of secondary vortex in the center position,and this phenomenon will have an adverse effect on its separation efficiency. With the increase of the wall thickness of the exhaust pipe,the overall axial velocity increases in turn basically. With the increase of the wall thickness of the exhaust pipe,the pressure drop value decreases successively,the cutting particle size first decreases slightly, and then increases continuously. When the wall thickness is 0.025 D,the separation efficiency is the best. With the increase of the wall thickness of the exhaust pipe,vortices are gradually formed just under the inner wall of the exhaust pipe,and the vortex intensity increases gradually. If the variation in wall thickness of the exhaust pipe of the cyclone separator is ignored,this will lead to deviation in performance prediction and numerical simulation.
关键词(KeyWords):
旋风分离器;排气管;流场;压降;切割粒径;速度矢量
cyclone separator;exhaust pipe;flow field;pressure drop;cutting particle size;velocity vector
基金项目(Foundation): 中国工程院自然基金资助项目(2013-04-ZCQ-002);; 石油天然气装备教育部重点实验室开放基金资助项目(OGE201403-28)
作者(Author):
李杰,马欣,赖科,徐洋洋
LI Jie,MA Xin,LAI Ke,XU Yang-yang
参考文献(References):
- [1](丹)霍夫曼,(美)斯坦因.旋风分离器--原理、设计和工程应用[M].北京:化学工业出版,2004.
- [2]Derksen J J.Separation performance predictions of a stairmand high-efficiency cyclone[J].AIChEJournal,2003,49(6):1359-1371.
- [3]Hoekstra A J,Derksen J J,Akker H E A V D.An experimental and numerical study of turbulent swirling flow in gas cyclones[J].Chemical Engineering Science,1999,54:2055-2065.
- [4]Elsayed K,Lacor C.Numerical modeling of the flow field and performance in cyclones of different cone-tip diameters[J].Comput.Fluids,2011,51(1):48-59.
- [5]Masoud D,Shahidzade M S.A CFD study of the effect of vortex finder thickness on gas cyclone separator performance[J].Journal of Applied Sciences,2011,11:2570-2577.
- [6]Park C W,Song D H,Yook S J.Development of a single cyclone separator with three stages for size-selective sampling of particles[J].Journal of Aerosol Science,2015,89:18-25.
- [7]邹康,艾志久.旋风分离器防磨减阻性能机理研究[J].化学工程,2015,43(9):30-35.
- [8]黄兴华,王道连,王如竹,等.旋风分离器中气相流动特性及颗粒分离效率的数值研究[J].动力工程,2004,24(3):436-411.
- [9]谷新春,王宇光,王伟文,等.环流式旋风除尘器内颗粒运动的数值模拟[J].化学工业与工程技术,2013,34(6):45-50.
- [10]李琴,邹康,刘海东,等.基于颗粒受力的旋风分离器冲蚀机理的研究[J].流体机械,2017,45(3):42-47.
- [11]曹晴云,姬广勤,金有海,等.不同结构参数下旋风分离器气相流场的数值模拟[J].FLUIDMACHINERY,2008,36(6):34-39.
- [12]马欣,徐洋洋.排气管外延伸长度对旋风分离器性能的影响[J].过程工程学报,2016,16(6):915-921.
- [13]Hiraiwa Y,Oshitari T,Fukui K,et al.Effect of free air inflow method on fine particle classification of gas-cyclone[J].Sep.Purif.Technol.,2013,118:670-679.
- [14]Elsayed K,Lacor C.The effect of the dust outlet geometry on the performance and hydrodynamics of gas cyclones[J].Comput.Fluids,2012,68:134-147.
- [15]Li Q,Xu W,Wang J,et al.Performance evaluation of a new cyclone separator part I.experimental results[J].Sep.Purif.Technol.,2015,141:53-58.
- [16]Elsayed K,Lacor C.The effect of Cyclone vortex finder dimensions on the flow pattern and performance using LES[J].Comput.Fluids,2013,71:224-239.
- [17]Brar L S,Sharma R P,Dwivedi R.Effect of vortex finder diameteron flow field and collection efficiency of cyclone separators[J].Part.Sci.Technol.,2014,33(1):34-40.
- [18]Raoufi A,Shams M,Farzaneh M,et al.Numerical simulation and optimization of fluid flow in cyclone vortex finder[J].Chem.Eng.Process:Process Intensif.,2008,47(1):128-137.
- [19]Xiong Z,Ji Z,Wu X.Development of a cyclone separator with high efficiency and low pressure drop in axial inlet cyclones[J].Powder Technol.,2014,253:644-649.
- [20]Shukla S K,Shukla P,Ghosh P.Evaluation of numerical schemes using different simulation methods for the continuous phase modeling of cyclone separators[J].Adv.Powder Technol.,2011,22(2):209-219.
- [21]Hoekstra A J.Gas flow field and collection efficiency of cyclone separators[D].Delft:Technology University Delft,2000:27-42.