溴化锂绝热、增压双效吸收式制冷循环Boosting Double Effect Absorption Refrigeration Circle Using Heat and Mass Transfer Separation Absorber
王延觉,欧汝浩,陈焕新,张春安
WANG Yan-jue1,OU Ru-hao1,CHEN Huan-xin1,ZHANG Chun-an2(1.Huazhong University of Science and Technology
摘要(Abstract):
吸收器是溴化锂吸收式制冷循环中最大的部件,传统吸收器换热面积占机组的40%左右,采用传热传质分离吸收器,其传热面积不到传统吸收器的30%,大大改善了吸收器的传热效果。本文在传热传质分离双效吸收式制冷循环的基础上,增加了一台增压器以提高绝热吸收器压力,强化循环传质能力。根据模拟结果,补偿了少量电功的增压系统,可以有效降低循环总传热面积;通过降低循环溶液浓度,还可以达到降低循环驱动热源温度的目的,且循环热力系数与增压前基本相当。
Absorber is the most important component in lithium-bromide absorption refrigerator,heat transfer areas of traditional absorber are about 40 % of all the components.If heat and mass transfer separation absorber is used,its heat transfer areas is less than 30% compare to the traditional one,greatly improve absorber's heat transfer effect.Based on the double effect absorption refrigeration circle using heat and mass transfer separation absorber,a pressurizer is added in this study to heighten the pressure of the adiabatic absorber,strengthen its mass transfer ability.The result shows that the boosting system compensating a little amount of electricity,could reduce heat transfer areas of the system effectively,it could also lower the temperature of heat resource effectively by decreasing the concentration of the solution with the COP remained almost the same as the former one.
关键词(KeyWords):
吸收式制冷;传热传质分离;吸收压力;传热面积;驱动温度
absorption refrigeration;heat and mass transfer separation;absorption pressure;heat transfer areas;temperature of heat resource
基金项目(Foundation): 湖南省自然科学基金项目(04JJ3086);; 中国博士后基金项目(2003034121)
作者(Author):
王延觉,欧汝浩,陈焕新,张春安
WANG Yan-jue1,OU Ru-hao1,CHEN Huan-xin1,ZHANG Chun-an2(1.Huazhong University of Science and Technology
参考文献(References):
- [1]Summerer F,Ziegler F,Riesch P,et al.Hydroxideabsorption heat pumps with spray absorber[J].ASHRAE Trans,1996,102(1):1010-1016.
- [2]Ryan,William A.Adiabatic water absorption in aspray of an aqueous solution of lithium bromide[Z].UMI press,1995.
- [3]Flamensbeck M,et al.A cost effective absorptionchiller heat exchangers using water and hydroxides[J].Applied thermal engineering,1998,(18):413-425.
- [4]Warnakulasuriya,Kithsiri F S.Heat and mass transferand water absorption properties of new absorbent drop-lets[D].Thesis for the Degree of Doctor of Engineer-ing,University of Illinois at Chicago,1999.
- [5]章文斌.空冷溴化锂吸收式制冷机的研究[D].浙江大学,2001.
- [6]郑飞,陈光明.溴化锂水溶液绝热吸收过程实验研究[J].太阳能学报,2002,23(2):166-170.
- [7]吴双,申江,邹同华,等.LiBr喷雾吸收器的传热传质分离研究[J].制冷,2003,22(4):59-63.
- [8]郎群英.传热传质分离吸收器及其溴化锂吸收式制冷系统的研究[D].天津商学院,2004.
- [9]沈维道,蒋智敏,童钧耕.工程热力学[M].高等教育出版社,2001.
- [10]贾明生.溴化锂水溶液的几个主要物性参数计算方程[J].湛江海洋大学学报,2002,22(3):52-58.
- [11]Kaita Y.Thermodynamic properties of lithium bro-mide water solutions at high temperatures[J].Inter-national Journal of Refrigeration,2001,(24):374-390.
- [12]Hyland R W,Wexier A.Formulations for the thermo-dynamic properties of the saturated phases of H2Ofrom 173.15K to 473.15K[J].ASHRAE Transac-tions,1983,(89):500-519.
- [13]A Malhotra D MR Panda.Thermodynamic propertiesof superheated and supercritical steam[J].AppliedEnergy,2001,68(4):387-393.
- [14]戴永庆.溴化程吸收式制冷技术及应用[M].北京:机械工业出版社,2001.
- [15]Chen Guangming,Eiji Hihara.A new absorption re-frigeration cycle using solar energy[J].Solar Ener-gy,1999,66(6):479-482.
- 吸收式制冷
- 传热传质分离
- 吸收压力
- 传热面积
- 驱动温度
absorption refrigeration - heat and mass transfer separation
- absorption pressure
- heat transfer areas
- temperature of heat resource
- 王延觉
- 欧汝浩
- 陈焕新
- 张春安
WANG Yan-jue1 - OU Ru-hao1
- CHEN Huan-xin1
- ZHANG Chun-an2(1.Huazhong University of Science and Technology
- 王延觉
- 欧汝浩
- 陈焕新
- 张春安
WANG Yan-jue1 - OU Ru-hao1
- CHEN Huan-xin1
- ZHANG Chun-an2(1.Huazhong University of Science and Technology