多载荷耦合作用下涡旋压缩机动涡旋盘的应力应变分析Stress and Strain Analysis of Orbiting Scroll of Scroll Compressor under Coupled Action of Multiple Loads
李超;刘竞中;王海宏;张晓东;
Li Chao;Liu Jingzhong;Wang Haihong;Zhang Xiaodong;College of Petroleum and Chemical Engineering,Lanzhou University of Technology;
摘要(Abstract):
为了更准确地研究涡旋压缩机动涡旋盘实际运转时的应力应变情况,以某型号的涡旋压缩机为研究对象,分析了实际稳定运行工况下动涡旋盘温度载荷的非线性分布情况。采用ANSYS Workbench有限元分析软件分别计算了动涡旋盘在非均匀热载荷、气体力载荷、惯性载荷单独作用时以及热-气-固3种载荷耦合作用下应力与应变的变化规律。研究表明在气体力载荷单独作用下,动涡旋盘的应力应变与涡旋齿两侧气体压力差有关,压力差越大,形变越大;在惯性载荷单独作用下,最大形变发生在吸气腔最外侧齿顶位置;而热载荷的作用使得涡旋盘的最大形变位置发生了变化,动涡旋盘的最大形变位置由第二压缩腔移至排气腔齿顶。同时,相比于气体力载荷和惯性载荷引起的形变量,热载荷使得总形变量大幅增加,在多载荷耦合作用下最大形变发生在涡旋齿排气腔齿头处。
In order to study the stress and strain of the orbiting scroll of scroll compressor in actual operation,the scroll compressor of a model was used as the research object to analyze the nonlinear distribution of the temperature load of the orbiting scroll of a scroll compressor in actual stable operation.The finite element analysis software ANSYS Workbench was used to calculate the stress and strain change rules of the orbiting scroll under the action of non-uniform heat load,gas force load and inertia load and the coupled action of all the three loads.The results show that the stress-strain of the scroll is related to the gas pressure difference between the two sides of the scroll under the action of the gas force load alone,and the larger the pressure difference is,the larger the deformation is;under the action of the inertia load alone,the maximum deformation occurs at the top of the outermost tooth of the suction chamber;while under the action of the thermal load,the maximum deformation position of the scroll changes,and the maximum deformation position of the scroll moves from the second compression chamber to the tooth top of the exhaust chamber.At the same time,compared with the shape deformation caused by the gas force load and inertia load,the total shape deformation is greatly increased by the thermal load,and the maximum deformation occurs at the tooth head of the scroll tooth exhaust chamber under coupled action of multiple loads.
关键词(KeyWords):
涡旋压缩机;动涡旋盘;非线性温度载荷;热流固耦合;形变规律
scroll compressor;orbiting scroll;nonlinear temperature load;thermal fluid-solid coupling;deformation law
基金项目(Foundation):
作者(Authors):
李超;刘竞中;王海宏;张晓东;
Li Chao;Liu Jingzhong;Wang Haihong;Zhang Xiaodong;College of Petroleum and Chemical Engineering,Lanzhou University of Technology;
参考文献(References):
- [1]刘振全.涡旋式流体机械与涡旋压缩机[M].北京:机械工业出版社,2009.
- [2]刘振全,戚智勇.涡旋压缩机动涡旋盘应力及变形的研究[J].流体机械,1995,23(10):23-26.
- [3]李超,谢文君,赵嫚.多场耦合作用下动涡旋盘的变形和应力研究[J].流体机械,2013,41(1):16-20.
- [4]殷俊,杨美传,冯鉴.基于热应力场耦合的涡旋压缩机动涡盘有限元分析[J].压缩机技术,2011(6):6-9.
- [5]杜萌,张贤明,王立存.多载荷作用下动涡旋盘应力和变形研究[J].重庆工商大学学报(自然科学),2015,32(11):96-100.
- [6]Ooi Kim Tiow,Zhu Jiang.Convective heat transfer in a scroll compressor chamber:a 2-D simulation[J].International Journal of Thermal Sciences,2004,43(7):677-688.
- [7]Lin C,Chang Y,Liang K,et al.Temperature and thermal deformation analysis on scrolls of scroll compressor[J].Applied Thermal Engineering,2005,25(11-12):1724-1739.
- [8]邵兵.涡旋泵涡旋齿的压力和温度场模型[J].化工机械,2011,38(5):588-590.
- [9]李超,谢文君,赵嫚.不同载荷及结构对涡旋齿强度影响的有限元分析[J].机械工程学报,2015,51(6):189-197.
- [10]闫乐,周忠宁,张森,等.煤炭颗粒对半开式离心泵磨损的数值研究[J].流体机械,2020,48(1):62-65.
- [11]温智炜,闫素英,苏世良,等.基于流固耦合的旋转轴唇型油封流场特性及泵汲率研究[J].流体机械,2020,48(4):6-11.
- [12]Akira Hiwata,Yoshiyuki Futagami,Takashi Morimoto,et al.Deformation Control of scroll compressor for CO2 refrigerant[C]//Proc.of International Compressor Engineering Conference Purdue,2006,C140:1-7.
- [13]Lin Chiachin,Chang Yuchoung,Liang Kunyi,et al.Temperature and thermal deformation analysis onscrolls of scroll compressor[J].Applied Thermal Engineering,2005(25):1724-1739.
- 涡旋压缩机
- 动涡旋盘
- 非线性温度载荷
- 热流固耦合
- 形变规律
scroll compressor - orbiting scroll
- nonlinear temperature load
- thermal fluid-solid coupling
- deformation law
- 李超
- 刘竞中
- 王海宏
- 张晓东
Li Chao- Liu Jingzhong
- Wang Haihong
- Zhang Xiaodong
- College of Petroleum and Chemical Engineering
- Lanzhou University of Technology
- 李超
- 刘竞中
- 王海宏
- 张晓东
Li Chao- Liu Jingzhong
- Wang Haihong
- Zhang Xiaodong
- College of Petroleum and Chemical Engineering
- Lanzhou University of Technology