基于CEEMD与SVM的离心泵转子不对中故障诊断方法研究Research on fault diagnosis method of centrifugal pump rotor misalignment based on CEEMD and SVM
肖幸鑫,宋礼威,张翊勋,董亮,张宇航
XIAO Xingxin,SONG Liwei,ZHANG Yixun,DONG Liang,ZHANG Yuhang
摘要(Abstract):
为了更好地判断离心泵转子不对中故障,通过互补经验模态分解(CEEMD)结合支持向量机(SVM)对转子不对中故障进行识别,搭建离心泵故障模拟实验台,利用电涡流振动位移传感器采集离心泵转子位移信号,使用CEEMD算法分解离心泵在正常状态与故障状态下信号,通过相关系数法和阈值,选取有效内涵模态分量(IMF)分量进行信号重构,计算重构信号的时域特征参数并组成特征向量,最后利用SVM对故障进行识别分类。结果表明,采用CEEMD方法可以有效提取出离心泵转子不对中时的故障特征。采用SVM方法对重构后的信号提取的特征向量进行训练,故障识别准确率可以达到93%,能够有效识别离心泵转子不对中故障。
In order to better judge the occurrence of rotor misallocations of centrifugal pump,complete ensemble empirical mode decomposition(CEEMD)and support vector machine(SVM)were used to identify rotor misalignment.By setting up a centrifugal pump fault simulation experimental platform,eddy current vibration displacement sensor was used to collect the centrifugal pump rotor displacement signals;CEEMD algorithm was used to decompose the centrifugal pump signals in normal state and fault state;and the Intrinsic Mode Functions(IMF)were selected to reconstruct the signals through the correlation coefficient method and threshold value;the time domain characteristic parameters of reconstructed signals were calculated and were formed to characteristic vectors.Finally,the faults were identified and classified by SVM.The results show that the CEEMD method can effectively extract the fault characteristics of the centrifugal pump when the rotor is misaligned.SVM method is used to train the characteristic vector extracted from the reconstructed signals,and the fault identification accuracy can reach 93%,which can effectively identify the occurrence of rotor misalignment fault of centrifugal pump.
关键词(KeyWords):
离心泵;转子不对中;CEEMD;时域特征参数;SVM;故障诊断
centrifugal pump;rotor misalignment;CEEMD;time domain characteristic parameters;SVM;fault diagnosis
基金项目(Foundation): 国家自然科学基金项目(51879122,51779108,51779106);; 镇江市重点研发计划项目(GY2017001,GY2018025);; 过程装备与控制工程四川省高校重点实验室开放基金项目(GK201614,GK201816);; 江苏高校优势学科建设工程项目(PAPD);; 江苏省“六大人才高峰”高层次人才项目(GBZB-017)
作者(Author):
肖幸鑫,宋礼威,张翊勋,董亮,张宇航
XIAO Xingxin,SONG Liwei,ZHANG Yixun,DONG Liang,ZHANG Yuhang
参考文献(References):
- [1]尚欢欢.离心泵轴系不对中振动特性研究[D].镇江:江苏大学,2020.SHANG H H.Research on misalignment vibration characteristics of centrifugal pump shafting[D].Zhengjiang:Jiangsu University,2020.
- [2]卢军民,刘照,荀杰.离心泵常见故障的诊断[J].煤矿机械,2007(6):180-182.LU J M,LIU Z,XUN J.Diagnosis of common faults of centrifugal pump[J].Coal Mining Machinery,2007(6):180-182.
- [3]雪增红,曹潇,王天周.离心泵机组振动故障诊断与分析[J].排灌机械工程学报,2018,36(6):472-477.XUE Z H,CAO X,WANG T Z.Vibration fault diagnosis and analysis of centrifugal pump unit[J].Journal of Drainage and Irrigation Machinery Engineering,2018,36(6):472-477.
- [4]郑杰峰,朱孔臣,张正军,等.振动信号分析技术在汽轮机故障诊断中的应用[J].设备管理与维修,2020(15):143-146.ZHENG J F,ZHU K C,ZHANG Z J,et al.Application of vibration signal analysis technology in fault diagnosis of steam turbine[J].Equipment Management and Maintenance,2020(15):143-146.
- [5]李峰,庞新宇,杨兆建.基于电流时频特征的不对中故障诊断研究[J].电气传动,2018,48(4):70-74.LI F,PANG X Y,YANG Z J.Research on misalignment fault diagnosis based on time-frequency characteristics of current[J].Electric Drive,2018,48(4):70-74.
- [6]唐贵基,王菲,周福成,等.基于谱峭度与变分模态分解的转子微弱不对中故障诊断[J].噪声与振动控制,2018,38(1):204-208.TANG G J,WANG F,ZHOU F C,et al.Fault diagnosis of weak rotor misalignment based on spectral kurtosis and variational mode decomposition[J].Noise and Vibration Control,2018,38(1):204-208.
- [7]刘忠,张许阳,邹淑云,等.基于改进VMD的离心泵空化声发射信号特征提取[J].排灌机械工程学报,2020,38(12):1196-1202.LIU Z,ZHANG X Y,ZOU S Y,et al.Feature extraction of cavitation acoustic emission signal of centrifugal pump based on improved VMD[J].Journal of Drainage and Irrigation Mechanical Engineering,2020,38(12):1196-1202.
- [8]XIE Q Y,GU Y J,ZHANG G K,et al.Research on diagnosis rule acquisition for turbo-generator unit rotor misalignment fault based on rough set[C]//IEEEBeijing Section.Proceedings of 2012 IEEE 11th International Conference on Signal Processing,IEEE Beijing Section:IEEE Beijing Section,2012:5.
- [9]YAO D C,YANG J W,LI X,et al.A hybrid approach for fault diagnosis of railway rolling bearings using STWD-EMD-GA-LSSVM[J].Mathematical Problems in Engineering,2016.
- [10]肖军,舒悦,谢传东,等.基于二叉树支持向量机的往复压缩机气阀故障诊断方法[J].流体机械,2020,48(10):48-53.XIAO J,SHU Y,XIE C D,et al.Fault diagnosis method of reciprocating compressor valve based on binary tree support vector machine[J].Fluid Machinery,2020,48(10):48-53
- [11]杨世锡,胡劲松,吴昭同,等.旋转机械振动信号基于EMD的希尔伯特变换和小波变换时频分析比较[J].中国电机工程学报,2003(6):102-107.YANG S X,HU J S,WU Z T,et al.Time-frequency analysis and comparison between hilbert transform and wavelet transform for vibration signals of rotating machinery based on EMD[J].Proceedings of the CSEE,2003(6):102-107.
- [12]王金东,代梅,夏法锋,等.基于EMD信息熵和支持向量机的往复压缩机轴承故障诊断[J].流体机械,2014,42(7):43-46.WANG J D,DAI M,XIA F F,et al.Reciprocating compressor bearing fault diagnosis based on EMD information entropy and support vector machine[J].Fluid Machinery,2014,42(7):43-46.
- [13]杜星洲.基于振动信号处理及SVM的旋转机械故障诊断研究[D].哈尔滨:哈尔滨工业大学,2019.DU X Z.Research on rotating machinery fault diagnosis based on vibration signal processing and SVM[D].Harbin:Harbin Institute of Technology,2019.
- [14]黄惠中.基于聚类分析的旋转机械智能故障诊断[D].桂林:桂林电子科技大学,2020.HUANG H Z.Intelligent fault diagnosis of rotating machinery based on cluster analysis[D].Guilin:Guilin University of Electronic Technology,2020.
- [15]李志国,林彬,高鹏涛,等.基于SVD-ITD和支持向量机的潜水磨碎泵故障诊断[J].流体机械,2021,49(10):97-104.LI Z G,LIN B,GAO P T,et al.Fault diagnosis of submersible grinding pump based on SVD-ITD and support vector machine[J].Fluid Machinery,2021,49(10):97-104.
- [16]焦彦军,胡春.基于改进EEMD方法的数字滤波器[J].电力自动化设备,2011,31(11):64-68.JIAO Y J,HU C.Digital filter based on improved EEMD method[J].Electric Power Automation Equipment,2011,31(11):64-68.
- [17]孙萧,黄民,马超.基于CEEMD和WOA_LSSVM滚动轴承声信号故障诊断[J].组合机床与自动化加工技术,2021(2):52-56.SUN X,HUANG M,MA C.Based on ceemd and WOA_ LSSVM fault diagnosis of rolling bearing acoustic signal [J].Modular Machine Tool and Automatic Processing Technology,2021(2):52-56.
- [18]李怡,李焕锋,刘自然.基于CEEMDAN多尺度熵和SSA-SVM的滚动轴承故障诊断研究[J].机电工程,2021,38(5):599-604.LI Y,LI H F,LIU Z R.Fault diagnosis of rolling bearing based on CEEMDAN multi-scale entropy and SSA SVM[J].Journal of Mechanical & Electrical Engineering,2021,38(5):599-604.
- [19]史勇,郭俊先,李雪莲,等.哈密瓜无损检测技术及分级装备的研究现状和发展趋势[J].包装与食品机械,2021,39(6):75-82.SHI Y,GUO J X,LI X L,et al.Research status and development trend of non-destructive testing technology and grading equipment for Hami melon[J].Packaging and Food Machinery,2021,39(6):75-82.
- [20]万晓静,孙文磊,陈坤.基于CEEMD能量熵特征提取和VNWOA LSSVM的风力机轴承故障诊断方法研究[J].机电工程,2020,37(10):1186-1191.WAN X J,SUN W L,CHEN K.Fault diagnosis for wind turbine bearing based on CEEMD energy entropy and VNWOA LSSVM[J].Journal of Mechanical & Electrical Engineering,2020,37(10):1186-1191.
- [21]杨孟,王瑾,周西峰,等.基于CEEMD和小波包的降噪方法研究[J].南京邮电大学学报(自然科学版),2018,38(2):41-47.YANG M,WANG J,ZHOU X F,et al.Noise reduction method based on ceemd and wavelet packet[J].Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition),2018,38(2):41-47.
- [22]陈渠.支持向量机在电机轴承故障诊断中的应用效果研究[J].电子制作,2021(4):73-75.CHEN Q.Research on application effect of support vector machine in fault diagnosis of motor bearing[J].Electronic Production,2021(4):73-75.
- [23]吴飞,程科,丁军,刘苏行.基于VMD-AR谱的多轴转子系统故障特征信息提取方法[J].江苏大学学报(自然科学版),2020,41(5):562-568.WU F,CHENG K,DING J,et al.Method for extracting fault feature information of multi axis rotor system based on VMD-AR spectrum[J].Journal of Jiangsu University(Natural Science Eidtion),2020,41(5):562-568.
- 离心泵
- 转子不对中
- CEEMD
- 时域特征参数
- SVM
- 故障诊断
centrifugal pump - rotor misalignment
- CEEMD
- time domain characteristic parameters
- SVM
- fault diagnosis