3种型式CO_2跨临界带膨胀机热泵循环性能研究Performance study of three kinds of CO_2 transcritical heat pump cycle with expender
杨俊兰,姬旭,李金芮,白杨
YAGN Junlan,JI Xu,LI Jinrui,BAI Yang
摘要(Abstract):
为了提高CO_2跨临界热泵系统的性能,通过建立热力学模型,将3种带膨胀机的CO_2跨临界循环,即单级膨胀机循环(SCE)、双级一次节流中间完全冷却循环(TPCE)、双级二次节流中间完全冷却循环(TSCE)与单级节流阀循环(BASE)进行了制热性能对比分析。结果表明:蒸发温度变化时,TSCE循环的制热系数COP_h最大,分别比SCE和TPCE循环平均高出6.32%和10.01%;当气体冷却器出口温度高于37 ℃时,SCE循环的COP_h最大,低于37 ℃时,TSCE性能最好;TPCE和TSCE循环在蒸发温度变化过程中,存在蒸发温度的最优值,对应对基础循环的提升程度ΔCOP最大,TPCE和TSCE循环的ΔCOP最大值分别为27.27%和15.21%;根据假设条件,进而得到了最优高压和蒸发温度和气体冷却器出口温度之间的关联式。
In order to improve the performance of CO_2 transcritical heat pump system,three kinds of CO_2 transcritical cycles with expander,i.e.,single-stage expander cycle(SCE),two-stage primary throttling intermediate complete cooling cycle(TPCE),two-stage secondary throttling intermediate complete cooling cycle(TSCE) and single-stage throttle valve cycle(BASE),were compared and analyzed by establishing thermodynamic model.The results show that the heating coefficient COP_h of TSCE cycle is the highest when the evaporation temperature changes,an increase of 6.32% and 10.01% against that of SCE and TPCE cycle,respectively;When the outlet temperature of the gas cooler is higher than 37 ℃,the COP_h of SCE cycle is the largest,and when the outlet temperature is lower than 37 ℃,the performance of TSCE is the best;There is an optimal value of evaporation temperature in TPCE and TSCE cycles,which has the greatest increase ΔCOP corresponding to basic cycle,and the maximum value of TPCE and TSCE cycles was 27.27% and 15.21%,respectively;According to the assumptions,the correlations between the optimal high pressure and evaporation temperature and the outlet temperature of the gas cooler were obtained.
关键词(KeyWords):
CO_2跨临界循环;膨胀机;系统性能;双级压缩
transcritical CO_2 cycle;expander;system performance;two-stage compression
基金项目(Foundation): 天津市科技特派员项目(16JCTPJC52800)
作者(Author):
杨俊兰,姬旭,李金芮,白杨
YAGN Junlan,JI Xu,LI Jinrui,BAI Yang
参考文献(References):
- [1]LORENTZEN G.Revival of carbon dioxide as a refrigerant[J].International Journal of Refrigeration,1994,17(5):292-301.
- [2]马一太,王景刚,魏东.自然工质在制冷空调领域里的应用分析[J].制冷学报,2002(1):1-5.MA Y T,WANG J G,WEI D.Analysis of natural refrigerants applied in refrigeration and air conditioning[J].Journal of Refrigeration,2002(1):1-5.
- [3]杨俊兰,白杨.CO2跨临界双级压缩机械过冷循环的性能分析[J].流体机械,2021,49(10):59-65.YANG J L,BAI Y.Performance analysis for mechanical subcooling cycle of CO2 transcritical two-stage compression[J].Fluid Machinery,2021,49(10):59-65.
- [4]杨俊兰,李金芮,白杨,等.带回热器CO2跨临界热泵系统的性能分析[J].流体机械,2021,49(11):33-40.YANG J L,LI J R,BAI Y,et al.Performance analysis of CO2 transcritical heat pump system with internal heat exchanger[J].Fluid Machinery,2021,49(11):33-40.
- [5]CAVALLINI A,CECCHINATO L,CORRADI M,et al.Two-Stage transcritical carbon dioxide cycle optimisation:a theoretical and experimental analysis[J].International Journal of Refrigeration,2005,28(8):1274-1283.
- [6]谢英柏,孙刚磊,刘春涛,等.双级压缩跨临界CO2热泵中间冷却型式优化[J].工程热物理学报,2009,30(11):1815-1817.XIE Y B,SUN G L,LIU C T,et al.Intercooling pattern optimization of two-stage trans-critical carbon dioxide heat pump[J].Journal of Engineering Thermophysics,2009,30(11):1815-1817.
- [7]YANG J L,MA Y T,LI M X,et al.Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander[J].Energy,2005,30(7):1162-1175.
- [8]BAI T,YAN G,YU J.Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector[J].Energy,2015,84:325-335.
- [9]YANG J L,MA Y T,LIU S C.Performance investigation of transcritical carbon dioxide two-stage compression cycle with expander[J].Energy,2007,32(3):237-245.
- [10]CECCHINATO L,CHIARELLO M,CORRADI M,et al.Thermodynamic analysis of different two-stage transcritical carbon dioxide cycles[J].International Journal of Refrigeration,2009,32(5):1058-1067.
- [11]马一太,袁秋霞,李敏霞,等.跨临界CO2带膨胀机和带喷射器逆循环的性能比较[J].低温与超导,2011,39(5):36-41.MA Y T,YUAN Q X,LI M X,et al.A performance comparison of the transcritical CO2 refrigeration cycle with expander and ejector[J].Cryogenics & Superconductivity,2011,39(5):36-41.
- [12]谢英柏,刘迎福,汤建成,等.中间完全冷却CO2跨临界双级压缩节流循环[J].化工学报,2010,61(3):551-556.XIE Y B,LIU Y F,TANG J C,et al.Trans-critical throttling cycle of CO2 in two-stage compression with complete inter-cooling[J].CIESC Journal,2010,61(3):551-556.
- [13]田华,马一太,王洪利,等.CO2跨临界双级压缩带中间冷却器系统[J].天津大学学报,2010,43(8):685-689.TIAN H,MA Y T,WANG H L,et al.CO2 trans-critical two-stage compression system with inter-stage cooler[J].Journal of Tianjin University,2010,43(8):685-689.
- [14]孙志利,马一太.单级跨临界二氧化碳带膨胀机循环与四种双级循环的热力学分析[J].制冷学报,2016,37(3):53-59.SUN Z L,MA Y T.Thermodynamic analysis of one kind of single-stage with expender and four kinds of two-stage transcritical carbon dioxide refrigeration cycle[J].Journal of Refrigeration,2016,37(3):53-59.
- [15]刘圣春,李正.CO2跨临界双级压缩制冷循环的热力学分析[J].制冷技术,2016,36(4):8-13.LIU S C,LI Z.Thermodynamic analysis of CO2 transcritical two-stage compression refrigeration cycle[J].Chinese Journal of Refrigeration Technology,2016,36(4):8-13.
- [16]民用建筑供暖通风与空气调节设计规范:GB 50736-2012[S].北京:中国建筑科学研究院,2012.Design code for heating ventilation and air conditioning of civil buildings:GB 50736-2012[S].Beijing:China Academy of Building Research,2012.