HHT与Elman神经网络在离心泵故障振动信号处理中的应用Application of Hilbert-huang Transform and Elman Neural Network in Vibration Signals Processing for Centrifugal Pump Failure
周云龙,洪君,张学清,赵鹏
ZHOU Yun-long,HONG Jun,ZHANG Xue-qing,ZHAO Peng(School of Energy and Mechanical Engineering of Northeast Dianli University
摘要(Abstract):
提出了一种Hilbert-Huang变换(HHT)和Elman神经网络相结合的离心泵振动信号故障诊断新方法。首先,将离心泵振动信号时间序列数据经验模态分解(Empirical Mode Decomposition,简称EMD),然后经过Hilbert-Huang变换获得各模态(Intrinsic Mode Functions,简称IMF)的能量,并以“能量比”为元素,构造离心泵振动信号的特征向量,根据Elman神经网络模型能够逼近任意非线性函数的特点和具有反映系统动态特性的能力,利用Elman神经网络模型实现离心泵故障的诊断。实验研究结果表明该方法对离心泵振动信号故障具有很高的诊断率。
A new method of vibration signals fault diagnosis for Centrifugal Pump using the Hilbert-Huang Transform(HHT) combined with Elman neural networks was put forward.First,the series datas of vibration signals for Centrifugal Pump were separated to components with different intrinsic mode function(IMF) by using empirical mode decomposition(EMD),then the Hilbert transformation was applied to every IMFs.The result of the method is the energy of every IMFs.The conception of "energy ratio" is proposed,based on the theory that signals energy in all IMFs can be affected by faults deeply,to construct feature vectors of Centrifugal Pump vibration signals.Based on the fact that the Elman model of neural network can well approach any nonlinear continuous function and has ability to reflect dynamic features of the systems.A Elman model is used to realize fault diagnosis for Centrifugal Pump.The experimental result indicates that this method,can show high diagnosis precision for the fault diagnosis of the Centrifugal Pump.
关键词(KeyWords):
离心泵;Hilbert-Huang变换;Elman神经网络;故障诊断
centrifugal pump;hilbert-huang transform;elman neural networks;fault diagnosis
基金项目(Foundation):
作者(Author):
周云龙,洪君,张学清,赵鹏
ZHOU Yun-long,HONG Jun,ZHANG Xue-qing,ZHAO Peng(School of Energy and Mechanical Engineering of Northeast Dianli University
参考文献(References):
- [1]黄文虎,夏松波,刘瑞岩.设备故障诊断原理技术及应用(第1版)[M].北京:科学出版社,1996.
- [2]Liu B,Ling S F.On the selection of informative wave-lets for machinery diagnosis[J].Mechanical Systems&Signal Processing,1999,13(1):145-162.
- [3]Andrate MA,Messina AR,Rivera C A,et al.Identi-fication of instantaneous attributes of torsional shaft sig-nals using the Hilbert transform[J].IEEE Transactionson Power Systems,2004,19(3):1422-1429.
- [4]Huang N E,Shen Z,Long S R,et al.The empiricalmode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis[J].Pro-ceedings of the Royal Society of London Series A,1998,454:903-995.
- [5]罗奇峰,石春香.Hilbert-Huang变换理论及其计算中的问题[J].同济大学学报,2003,31(6):637-640.
- [6]李世雄,陈东方.信号瞬时参数计算方法评论[J].信号处理,2003,19(1):59-63.
- [7]张海勇.一种新的时频分析方法-局域波分析[J].电子与信息学报,2003,25(10):1327-1333.
- [8]Atkinson C M,Long T W,Hanzevack E L.(1998).Virtual Sensing:A Neural-Network-Based IntelligentPerformance and Emission Prediction System for OnBoard Diagnose and Engine Control[J].Proceedings ofthe 1998 SAE International Congress&Exposition,1998,1357:39-51
- [9]郭丹,李平,曹江涛.基于Elman网络的非线性系统神经元自适应预测控制[J].计算机仿真,2003,20(8):55-57.
- [10]赖道平,顾冲时.Elman回归神经网络在大坝安全监控中的应用[J].河海大学学报(自然科学版),2003,31(3):255-258.
- 离心泵
- Hilbert-Huang变换
- Elman神经网络
- 故障诊断
centrifugal pump - hilbert-huang transform
- elman neural networks
- fault diagnosis
- 周云龙
- 洪君
- 张学清
- 赵鹏
ZHOU Yun-long - HONG Jun
- ZHANG Xue-qing
- ZHAO Peng(School of Energy and Mechanical Engineering of Northeast Dianli University
- 周云龙
- 洪君
- 张学清
- 赵鹏
ZHOU Yun-long - HONG Jun
- ZHANG Xue-qing
- ZHAO Peng(School of Energy and Mechanical Engineering of Northeast Dianli University